Technology for recycling still residues from dehalogenation to produce commercial zinc compounds
https://doi.org/10.17073/0021-3438-2025-4-18-29
Abstract
The study describes a method for recycling the still residue from the synthesis of hexafluoro-1,3-butadiene (HFBD) to produce zinc phosphate in the form of Zn3(PO4)2·2H2O, which is used as a component in anti-corrosion pigment materials. The still residue (“heavy liquid”) is preliminarily subjected to deep vacuum distillation (residual pressure 30 Pa, final temperature 160 °C) to recover volatile solventsnamely, isopropanol and dimethylformamide (DMF). The remaining residue is a concentrated solution of ZnCl2 (about 70 wt. %) containing approximately 10 g/dm3 of iron in the form of Fe(II) and Fe(III), as well as colored organic impurities of unidentified composition. According to the proposed process, the vacuum distillation residue is diluted with water at a ratio of 1 : 2, filtered to remove suspended solids, acidified to pH 2 by the addition of concentrated HCl, and treated oxidatively with H2O2 at 70 °C. Fe(III) is removed by extraction with a 30 % solution of Cyanex 272 in an aliphatic diluent, and the colored impurities are removed by adsorption onto BAU-1 grade activated carbon. An alternative method for removing Fe(III) and part of the colored impurities involves precipitating zinc in the form of (ZnOH)2CO3 using a 10 % Na2CO3 solution. Final clarification is also carried out using BAU-1 activated carbon. The purified, clear ZnCl2 solution is then subjected to a twostep precipitation process to obtain zinc phosphate. The resulting precipitate is filtered, thoroughly washed with water, dried, and ground. The study showed that after drying at 100–105 °C, the resulting powder corresponds to the composition Zn3(PO4)2·2H2O. The content of regulated impurities falls within acceptable limits, and the properties of the material meet the requirements for pigment-grade substances. A comparison of the obtained zinc phosphate with a commercially available sample of pigment-grade zinc phosphate was conducted. It was established that the proposed technology yields 580 g of zinc phosphate dihydrate per 1 kg of initial raw material.
About the Authors
V. A. DorozhkoRussian Federation
Vladimir A. Dorozhko – Engineer, World-Class Laboratory
24-26/49 Moskovskiy Prosp., St. Petersburg 190013
K. G. Chukreev
Russian Federation
Kirill G. Chukreev – Postgraduate Student of the Department of General Chemical Technology and Catalysis
24-26/49 Moskovskiy Prosp., St. Petersburg 190013
M. A. Afonin
Russian Federation
Mikhail A. Afonin – Cand. Sci. (Chem.), Associate Professor of the Department of Technology of Rare Elements and Nanomaterials Based on them
24-26/49 Moskovskiy Prosp., St. Petersburg 190013
References
1. Antraptseva N., Filkin I. The investigation of the conditions for obtaining double zinc-calcium phosphate. Sworld Journal. 2021;7(3):12—15. https://doi.org/10.30888/2410-6615.2020-07-03-073
2. Bhanvase B.A., Kutbuddin Y., Borse R.N., Selokar N.R., Pinjari D.V., Gogate P.R., Sonawane S.H., Pandit A.B. Ultrasound assisted synthesis of calcium zinc phosphate pigment and its application in nanocontainer for active anticorrosion coatings. Chemical Engineering Journal. 2013;231:345—354. https://doi.org/10.1016/j.cej.2013.07.030
3. Miao M., Yuan X.Yu., Wang X.G., Lu Y., Liu J.K. One step self-heating synthesis and their excellent anticorrosion performance of zinc phosphate/benzotriazole composite pigments. Dyes and Pigments. 2017;141: 74—82. https://doi.org/10.1016/j.dyepig.2017.01.060
4. Askari F., Ghasemi E., Ramezanzadeh B., Mahdavian M. Synthesis and characterization of the fourth generation of zinc phosphate pigment in the presence of benzotriazole. Dyes and Pigments. 2016;124:18—26. https://doi.org/10.1016/j.dyepig.2015.08.020
5. Askari F., Ghasemi E., Ramezanzadeh B., Mahdavian M. Effects of KOH : ZnCl2 mole ratio on the phase formation, morphological and inhibitive properties of potassium zinc phosphate (PZP) pigments. Journal of Alloys and Compounds. 2015;631:138—145. https://doi.org/10.1016/j.jallcom.2014.12.160
6. Onoda H., Haruki M., Toyama T. Preparation and powder properties of zinc phosphates with additives. Ceramics International. 2014;40(2):3433—3438. https://doi.org/10.1016/j.ceramint.2013.09.088
7. Zhou X., Bai H., Ma H., Li H., Yuan W., Du H., Zhang P., Xin H. Synthesis of zinc phosphate and zinc ammonium phosphate nanostructures with different morphologies through pH control. Materials Characterization. 2015;108:22—28. https://doi.org/10.1016/j.matchar.2015.08.012
8. Chen Y., Wang J., Wen S., Zhang J., Yu X., Mao Y. Synthesis of rose-like sheet zinc phosphate by the induction-calcination method and its application as a corrosion inhibitor in coatings. International Journal of Electrochemical Science. 2021;16(4):210—246. https://doi.org/10.20964/2021.04.63
9. Zhang Y., Li X., Yang D., Cai H., Ma Z., Zhang Y., Cui S., Wu Z. Incorporation of NH4 + in flower-like zinc phosphate pigment to enhance the corrosion resistance of waterborne epoxy. Materials Letters. 2024;358:135—157. https://doi.org/10.1016/j.matlet.2023.135850
10. Haddadi S.A., Alibakhshi E., Motlagh A.L., Ramazani A., Ghaderi M., Ramezanzadeh B., Mahdavian M., Arjmand M. Synthesis of methyltriethoxysilane-modified calcium zinc phosphate nanopigments toward epoxy nanocomposite coatings: Exploring rheological, mechanical, and anti-corrosion properties. Progress in Organic Coatings. 2022;171:107—115. https://doi.org/10.1016/j.porgcoat.2022.107055
11. Urbanovich N.I., Baranovsky K.E., Rosenberg E.V., Bendik T.I., Karpenkin A.A. Analysis of the corrosion properties of zinc-containing coatings based on dispersed hot-dip galvanizing waste. Lit’e i metallurgiya. 2020;(4):106—112. (In Russ.). https://doi.org/10.21122/1683-6065-2020-4-106-112
12. Syrchina N.V., Ashikhmina T.Ya., Kantor G.Ya. Obtaining inorganic pigments from electroplating waste. Teoreticheskie problemy ekologii. 2021;(1):22—29. (In Russ.). https://doi.org/10.25750/1995-4301-2021-1-022-029
13. Barkhatov V.I., Dobrovolsky I.P., Kapkaev Yu.Sh., Golovachev I.V. A method for processing spent acidic solutions of galvanic industries: Patent 2690328 (RF). 2018. (In Russ.).
14. Olshanskaya L.N., Lazareva E.N., Voloshkina Yu.V. Galvanic sludge — as a source of secondary resources for the production of industrial goods. Promyshlennye protsessy i tekhnologii. 2023;3(1(8)):7—14. (In Russ.). https://doi.org/10.37816/2713-0789-2023-3-1(8)-7-14
15. Becker J., Selbach I.С., Souza J.D., Brehm F.A. Viability for the production of inorganic pigments from galvanic sludge. International Journal of Research in Advanced Engineering and Technology. 2019;5(3):98—103. https://doi.org/10.6084/m9.figshare.12317375
16. Marcus М.I., Vlad M., Deák G., Moncea A., Panait A.M., Movileanu G. Thermal stability of inorganic pigments synthesized from galvanic sludge. Revista de Chimie. 2020;71(8):13—20. https://doi.org/10.37358/RC.20.8.8274
17. Tagiyev D.B., Aliyev A.M., Mamedov N.D., Fatullayeva S.S. Hydrothermal synthesis of zeolite-like iron and zinc phosphates and its application in the methanol conversion. Studies in Surface Science and Catalysis. 2004;154(A):1049—1055. https://doi.org/10.1016/S0167-2991(04)80923-6
18. Sayed I.R., Farhan A.M., Al Hammadi A.A., El-Sayed M.I., Abd El-Gaied I.M., El-Sherbeeny A.M., Al Zoubi W., Gun Ko.Y., Abukhadra M.R. Synthesis of novel nanoporous zinc phosphate/hydroxyapatite nano-rods (ZPh/HPANRs) core/shell for enhanced adsorption of Ni2+ and Co2+ ions: Characterization and application. Journal of Molecular Liquids. 2022;360:119—127. https://doi.org/10.1016/j.molliq.2022.119527
19. Fazal A., Iqbal M.J., Raza M.A., Almutairi B.S., Iqbal M.Z., Subhani T., Riaz S., Naseem S. Binder-free hydrothermal approach to fabricate high-performance zinc phosphate electrode for energy storage applications. Ceramics International. 2024;50(2A):2742—2753. https://doi.org/10.1016/j.ceramint.2023.10.336
20. Przywecka K., Grzmil B., Kowalczyk K., Sreńscek-Nazzal J. Studies on preparation of phosphate pigments for application in composite protective coatings. Progress in Organic Coatings. 2018;119:44—49. https://doi.org/10.1016/j.porgcoat.2018.02.009
21. Gao H., Yang S., Mao D., Long M., Qu X. Significant zinc release from widely-used commercial lithopone pigments under solar irradiation. Environmental Pollution. 2022;292(A):118—131. https://doi.org/10.1016/j.envpol.2021.118352
22. Kirpichnikov N.A., Bizhan S.P. The influence of longterm use of fertilizers during liming using zinc on the productivity of field crop rotation and the content of phosphates in soddy-podzolic soil. Agrokhimicheskii vestnik. 2021;(2):23—26. (In Russ.). https://doi.org/10.24412/1029-2551-2021-2-004
23. Javad S., Singh A., Kousar N., Arifeen F., Nawaz K., Azhar L. Chapter 13 — Zinc-based nanofertilizers: synthesis and toxicity assessments. In: Nanofertilizer Synthesis. 2024. Р. 213—232. https://doi.org/10.1016/B978-0-443-13535-4.00018-3
24. Bildinov I.K., Zabolotskikh A.V., Podsevalov P.V. Method for producing 1,2,3,4-tetrachlorohexafluorobutane: Patent 2246477 (RF). 2005. (In Russ.).
25. Bildinov I.K., Zabolotskikh A.V., Podsevalov P.V. Method for producing hexafluorobutadiene: Patent 2272017 (RF). 2005. (In Russ.).
26. Malyshev O.R. Method for producing hexafluorobutadiene: Patent 2340588 (RF). 2008. (In Russ.).
27. Perevozchikov V.V., Podsevalov P.V. Method for producing hexafluorobutadiene: Patent 2359951 (RF). 2009. (In Russ.).
28. Takakhasi K., Okhhigasi Y., Iyota D. Method for producing hexafluorobutadiene: Patent 2754857 (RF). 2021. (In Russ.).
29. Carson I., Love J.B., Morrison C.A., Tasker P.A., Moser M., Fischmann A.J., Jakovljevic B., Soderstrom M.D. Co-extraction of iron and sulfate by bis (2,4,4-trimethylpentyl) phosphinic acid, CYANEX® 272. Solvent Extraction and Ion Exchange. 2020;38(3):328—339. https://doi.org/10.1080/07366299.2020.1720123
30. Pavón S., Haneklaus N., Meerbach K., Bertau M. Iron (III) removal and rare earth element recovery from a synthetic wet phosphoric acid solution using solvent extraction. Minerals Engineering. 2022;182:107569. https://doi.org/10.1016/j.mineng.2022.107569
31. Guimarães A.S., Silva M.F., Resende G.PS., Santos I.D., Mansur M.B. Solvent extraction of metals from a Brazilian nickel lateritic liquor with D2EHPA and Cyanex 272. Brazilian Journal of Chemical Engineering. 2023;40(2):599—606. https://doi.org/10.1007/s43153-022-00252-4
32. Tran T.T., Iqbal M., Lee M.S. Comparison of the extraction and stripping behavior of iron (III) from weak acidic solution between ionic liquids and commercial extractants. Korean Journal of Metals and Materials. 2019;57(12):787—794. https://doi.org/10.3365/KJMM.2019.57.12.787
33. Chukreev C.G., Dorozhko V.A., Afonin M.A. Mathematical model of extraction of FeCl3 and HCl in the FeCl3—HCl—H2O—Undecan-1-ol system. Zhurnal obshchei khimii. 2022;92(1):155—164. (In Russ.). https://doi.org/10.31857/S0044460X22010176
34. Liu W., Zhang J., Xu Z., Liang J., Zhu Z. Study on the extraction and separation of zinc, cobalt, and nickel using ionquest 801, Cyanex 272, and their mixtures. Metals. 2021;11(3):401—413. https://doi.org/10.3390/met11030401
35. Fedorova M.I., Zakhodyaeva Yu.A., Voshkin A.A. Interfacial distribution of Fe(III) and Zn(II) in chloride systems with Aliquat 336 in polypropylene glycol 425. Teoreticheskie osnovy khimicheskoi tekhnologii. 2020;54(3):304—308. (In Russ.). https://doi.org/10.31857/S0040357120030021
36. Tangalychev R.D., Berezin N.B., Mezhevich Zh.V., Buzov S.V., Kozmin M.D. Study of the extraction of Zn(II) compounds from aqueous two-phase systems by liquid-liquid extraction. Butlerovskie soobshcheniya. 2021;67(7):88—93. (In Russ.). https://doi.org/10.37952/ROI-jbc-01/21-67-7-88
37. Novikov Yu.V., Lastochkina K.O., Boldina Z.N. Methods for studying the water quality of reservoirs. Moscow: Medicine, 1990. 175 p. (In Russ.).
38. Shwarzenbach G., Flashka G. Complexometric titration. Moscow: Khimiya, 1970. 230 р. (In Russ.).
39. Karyakin Yu.V., Angelov I.I. Pure chemicals. Moscow: Khimiya, 1974. 408 p. (In Russ.).
Review
For citations:
Dorozhko V.A., Chukreev K.G., Afonin M.A. Technology for recycling still residues from dehalogenation to produce commercial zinc compounds. Izvestiya. Non-Ferrous Metallurgy. 2025;(4):18-29. https://doi.org/10.17073/0021-3438-2025-4-18-29




























