Effect of metal-containing modifier compositions with sodium sulfide on the selective flotation of copper and zinc sulfides
https://doi.org/10.17073/0021-3438-2025-4-5-17
Abstract
The most efficient selective reagent modes for the flotation of a copper–zinc pyrite ore from one of the Ural deposits have been developed, based on the use of compositions of metal-containing reagent modifiers in combination with sodium sulfide. The study analyzed the most effective conditions for separating copper and zinc minerals from pyrite during the bulk flotation of copper–zinc ore, as well as the conditions for improving the selective separation of the bulk copper–zinc concentrate. The influence of reagent–modifier compositions introduced into the bulk flotation cycle on the process parameters of selective flotation of the bulk concentrate was evaluated. The results of fractional analysis of the floatability of copper, zinc, and iron minerals were presented, taking into account the flotation kinetics and the distribution of these minerals in the floated concentrate by fractions: poorly floatable, moderately floatable, and easily floatable. The reagent–modifier compositions used not only depressed pyrite flotation but also ensured efficient separation of copper and zinc minerals into individual concentrates. It was found that the most effective selectivity in flotation separation of copper and zinc minerals was achieved by introducing a composition of ferrous sulfate and sodium sulfide into the bulk copper–zinc flotation circuit in equal proportions (50 and 50 g/t). As a result, a copper–pyrite concentrate containing 12 wt. % Cu with a copper recovery of 74.45 % and a zinc concentrate containing 5 wt. % Zn with a zinc recovery of 73.68 % from the ore were obtained. Analysis of flotation kinetics showed that the introduction of this reagent mixture contributed to the highest flotation rate of copper, ensuring a maximum copper recovery to the froth (copper–pyrite) product of 86.74 %.
About the Authors
Htet Zaw OoRussian Federation
Htet Zaw Oo – Postgraduate Student of the Department of Mineral Processing, National University of Science and Technology “MISIS” (NUST MISIS).
1 Bld, 4 Leninskiy Prosp., Moscow 119049
Kyaw Zay Ya
Russian Federation
Kyaw Zay Ya – Cand. Sci. (Eng.), Intern-Doctoral Student of the Department of Mineral Processing, NUST MISIS.
1 Bld, 4 Leninskiy Prosp., Moscow 119049
B. E. Goryachev
Russian Federation
Boris E. Goryachev – Dr. Sci. (Eng.), Professor of the Depart- ment of Mineral Processing, NUST MISIS.
1 Bld, 4 Leninskiy Prosp., Moscow 119049
References
1. Chanturia V.A., Shadrunova I.V. Technology of enrichment of copper and copper-zinc ores of the Urals. Moscow: Nauka, 2016, 386 p. (In Russ.)
2. Kyaw Z.Y., Tiagalieva Z.A., Htet Z.O., Phyo K.K. Improvement of reagent flotation modes of sphalerite and pyrite from deposits of copper-zinc pyrite, polymetallic copper-zinc pyrite and polymetallic ores. IOP Conference Series: Earth and Environmental Science. XXI Conference of PhD Students and Young Scientists (CPSYS 2021) (Wroclaw, Poland, 23—25 June 2021). 2021;942(1):1—8. http://dx.doi.org/10.1088/1755-1315/942/1/012004
3. Herrera-Urbina R., Hanson J.S., Harris G.H., Fuerstenau D.W. Principles and practice of sulphide mineral flotation. In: P.M.J. Gray, G.J. Bowyer, J.F. Castle, D.J. Vaughan, N.A. Warner (Eds.). Sulphide deposits — their origin and processing. Dordrech: Springer, 1990. P. 87—101. https://doi.org/10.1007/978-94-009-0809-3_6
4. Ndoro T.O., Witika L.K. A review of the flotation of copper minerals. International Journal of Sciences: Basic and Applied Research (IJSBAR). 2017;34(2):145—165. https://www.gssrr.org/index.php/JournalOfBasicAndApplied/article/view/7590
5. Chandra A.P., Gerson A.R. A review of the fundamental studies of the copper activation mechanisms for selective flotation ofthe sulfide minerals, sphalerite and pyrite. Advances in Colloid and Interface Science. 2009;145(1-2): 97—110. http://dx.doi.org/10.1016/j.cis.2008.09.001
6. Yang B., Tong X., Lan Z., Cui Y., Xie X. Influence of the interaction between sphalerite and pyrite on the copper activation of sphalerite. Minerals. 2018;8(1):16. http://dx.doi.org/10.3390/min8010016
7. Bocharov V.A., Ryskin M.Ya., Pospelov N.D. Development of technology for processing copper-zinc ores of the Urals. Tsvetnye Metally. 1979;(10):105—107. (In Russ.). https://doi.org/10.17580/tsm.2018.04.03
8. Bocharov V., Ignatkina V., Kayumov A., Viduetsky M., Maltsev V. Complex processing of refractory pyrite copper, copper-zinc and polymetallic ores on the basis of flotation and combined technologies. Progress in Materials Science and Engineering. 2018;(12):89—96. http://dx.doi.org/10.1007/978-3-319-75340-9_12
9. Мамонов S.V., Dresvyankina T.P., Ziyatdinov S.V., Ershov A.A. Technological solutions for processing copper and copper-zinc ores of the pyrite deposit of the Urals. Globus: geology and business. 2020;(3):140—144. (In Russ.). https://www.vnedra.ru/globus/zhurnal-globus-62/
10. Zavarukhina E.A., Orekhova N.N. Effects of additional collecting agent on selectivity of flotation of copper and zinc sulfide. Gornyi informatsionno-analiticheskii byulleten. 2017;(3):305—311. (In Russ.). https://giab-online.ru/catalog/11943
11. Zhao Cao, Xumeng Chen, Yongjun Peng. The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering. 2018;119: 93—98. http://dx.doi.org/10.1016/j.mineng.2018.01.029
12. Yufan Mu, Yongjun Peng, Lauten R.A. The depression of pyrite in selective flotation by different reagent systems — A literature review. Minerals Engineering. 2016;(96): 143—156. http://dx.doi.org/10.1016/j.mineng.2016.06.018
13. Aikawa K., Ito M., Orii N., Jeon S., Park I., Haga K., Kamiya T., Takahashi T., Sunada K., Sakakibara T., Ono T., Magwaneng R.S., Hiroyoshi N. Flotation of copper ores with high Cu/Zn ratio: Effects of pyrite on Cu/Zn separation and an efficient method to enhance sphalerite depression. Minerals. 2022;12(9):1103. http://dx.doi.org/10.3390/min12091103
14. Goryachev B.E., Naing Lin Oo, Nikolaev A.A., Polyakova Yu.N. Features of the influence of copper, zinc, and iron cations on the flotation capacity of pyrite from one of the copper-zinc deposits in the Urals. Tsvetnye Metally. 2015;(1):12—18. (In Russ.). https://www.rudmet.ru/journal/1381/article/23748/
15. Htet Zaw Oo, Kyaw Zay Ya, Goryachev B.E. Effect of iron, zinc sulfate and sodium sulfide compositions on flotation of copper-zinc pyrite ores. Gornyi informatsionno-analiticheskii byulleten. 2023;(12):139—151. (In Russ.). https://giab-online.ru/files/Data/2023/12/12_2023_139-151.pdf
16. Htet Zaw Oo, Kyaw Zay Ya, Goryachev B.E. Role of simplex experimental planning in enhancing the prediction and optimization of multicomponent system compositions of reagent-modifiers in the flotation of copper-zinc ores. Problems of subsurface use. 2024;(3):87—98. (In Russ.). https://trud.igduran.ru/index.php/psu/article/view/642
17. Htet Zaw Oo, Kyaw Zay Ya, Goryachev B. E. Modeling and optimization of compositions of three-component modifier mixtures by simplex planning method to analyze their effect on the flotation of copper-zinc pyrite ores. Gornyi informatsionno-analiticheskii byulleten. 2024;(8):141—152. (In Russ.). https://giab-online.ru/files/Data/2024/8/08_2024_141-152.pdf
18. Bocharov V.A., Agafonova G.S., Khersonskaya I.I., Lapshina G.A., Khersonskii M.I., Kas'yanova E.F., Serebryannikov B.L., Ivanov N.F., Morozov B.A., Karbovskaya A.V. Method of flotation separation of sulfide copper-zinc-pyritic concentrates, that have zinc sulfides activated by copper and calcium cations: Patent 2054971 (RF). 1996. (In Russ.). https://www.elibrary.ru/item.asp?id=38031592
19. Kokorin A.M., Luchkov N.V., Smirnov A.O. Selective extraction method of copper minerals to concentrates at enrichment of copper-zinc pyrite-containing ores: Patent 242570 (RF). 2011. (In Russ.). https://www.elibrary.ru/item.asp?id=37475002
20. Zimbovsky I.G. Modern reagents-collectors for flotation of copper-zinc sulphide ores. Gornyi informatsionnoanaliticheskii byulleten. 2013;(5):117—122. (In Russ.). https://giab-online.ru/catalog/11943
21. Mamonov S.V., Volkova S.V., Chinova N.B., Khisamova A.S., Goraichuk P.K. Improving the technology of enrichment of copper-zinc ore from the pyrite deposit of the Ural type. Minerals and Mining Engineering. 2023;(3):86—96. (In Russ.). https://doi.org/10.21440/0536-1028-2023-3-86-96
22. Zimin A.V., Arustamyan M.A., Kalinin E.P., Solov’yova L.M., Nemchinova L.A. Classification of technological schemes for flotation enrichment of pyrite copper and copper-zinc ores. Mining Journal. 2012;(11):28—33. (In Russ.). https://www.rudmet.ru/journal/964/article/15148/
23. Shekhirev D.V. Method for calculating material distribution by floatability. Obogashchenie Rud. 2022;(4):27—34. (In Russ.). https://doi.org/10.17580/or.2022.04.05
24. Li Y., Zhao W., Gui X., Zhang X. Flotation kinetics and separation selectivity of coal size fractions. Physicochemical Problems of Mineral Processing. 2013;49(2):387—395. http://dx.doi.org/10.5277/ppmp130201
25. Goryachev B.E., Nikolaev A.A., Ils’ina E.Yu. Analysis of flotation kinetics of particles with the controllable hydrophobic behavior. Journal of Mining Science. 2010;46:72—77. https://doi.org/10.1007/s10913-010-0010-0
26. Goryachev B.E., Nikolaev A.A. Principles of kinetic “ion” modeling of adsorptive collector layer at the surface of nonferrous heavy metal sulfides. Journal of Mining Science. 2013;49:499—506. https://doi.org/10.1134/S1062739149030180
27. Saroj K.S., Nikkam S., Atul K.V. Performance evaluation of basic flotation kinetic models using advanced statistical techniques. International Journal of Coal Preparation and Utilization. 2019;39(2):65—87. http://dx.doi.org/10.1080/19392699.2017.1302436
28. Xiangning Bu, Liang Ge, Yale Peng, Cao Ni. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Journal of Physicochemical Problems of Mineral Processing. 2017;53(1):342—365. http://dx.doi.org/10.5277/ppmp170128
Review
For citations:
Oo H.Z., Ya K.Z., Goryachev B.E. Effect of metal-containing modifier compositions with sodium sulfide on the selective flotation of copper and zinc sulfides. Izvestiya. Non-Ferrous Metallurgy. 2025;(4):5-17. https://doi.org/10.17073/0021-3438-2025-4-5-17
JATS XML




























