Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Investigation of the behavior of sodium dichloroisocyanurate in aqueous solutions

https://doi.org/10.17073/0021-3438-2025-3-74-84

Abstract

Global gold consumption has steadily increased in recent decades, driven by expanding industrial applications and reserve accumulation by many countries. In parallel, depletion of high-grade deposits has shifted processing toward low-grade and refractory ores. These trends—together with tighter environmental regulations—highlight the need for alternative lixiviants for gold extraction. Although cyanide remains the industry standard, it is highly toxic and often ineffective for refractory sulfide ores. Other systems—thiosulfate (including ammoniacal thiosulfate), thiourea, and bromide/iodide lixiviants—are used far less frequently due to significant disadvantages. Among acidic chloride lixiviants, sodium dichloroisocyanurate (NaDCC) was investigated as a promising candidate. Use of NaDCC requires strongly acidic solutions (pH < 1.0) and an excess of Cl, i.e., conditions consistent with the stability domain of the Au(III) chloride complex (AuCl4). Using the rotating-disk technique, we examined the effects of temperature, disk rotation rate, and HCl concentration on the specific dissolution rate of the reagent (NaDCC), as well as on solution pH and redox potential (Eh). NaDCC hydrolyzes in water to form hypochlorous acid (HClO)—the primary source of active chlorine—while the concurrent pH decrease arises from formation of weak acids (hypochlorous and cyanuric). Adding HCl to NaDCC solutions generates molecular chlorine (Cl2), which evolves once its solubility limit is exceeded. Gold-dissolution tests across NaDCC and HCl concentrations identified an optimum at [HCI] = 14.4 g/dm3 and [NaDCC] = 3.0 g/dm3, yielding a maximum gold dissolution rate of υAu = 0.118 mg/(cm2·min).

About the Authors

R. E. Khabibulina
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Raisa E. Khabibulina – Graduate Student, Department of nonferrous metallurgy

19 Mira Str., Еkaterinburg 620002



E. B. Kolmachikhina
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Elvira B. Kolmachikhina – Cand. Sci. (Eng.), Department
of non-ferrous metallurgy

19 Mira Str., Еkaterinburg 620002



V. G. Lobanov
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Vladimir G. Lobanov – Cand. Sci. (Eng.), Associate Professor, Department of non-ferrous metallurgy

19 Mira Str., Еkaterinburg 620002



O. B. Kolmachikhina
Ural Federal University n.a. the First President of Russia B.N. Yeltsin
Russian Federation

Olga B. Kolmachikhina – Cand. Sci. (Eng.), Department
of non-ferrous metallurgy

19 Mira Str., Еkaterinburg 620002



References

1. Filippov A.P., Nesterov Yu.V. Redox processes and intensification of metal leaching. Moscow: Publishing house “Ruda i Metally”, 2009. 543 p. (In Russ.).

2. Barani K., Kogani Y., Nazarian F. Leaching of complex gold ore using a cyanide-glycine solution. Minerals Engineering. 2022;180:107475. https://doi.org/10.1016/j.mineng.2022.107475

3. Logsdon M.J., Hagelstein K., Mudder, T.I. The Management of cyanide in gold extraction. Ottawa: International Council on Metals and the Environment, 1999. 40 p.

4. Birich A., Stopic S., Friedrich B. Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents. Scientific Reports. 2019;9(1):7191. https://doi.org/10.1038/s41598-019-43383-4

5. Hilson G., Monhemius A.J. Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production. 2006; 14(12-13):1158—1167. https://doi.org/10.1016/j.jclepro.2004.09.005

6. Kholov Kh.I., Sharifboev N.T., Samikhov Sh.R., Dzhurakulov Sh.R., Zarifova M.S. Gold leaching by various solutions, alternative of cyanide and their prospects in the future. Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Tekhnika i tekhnologii. 2021;14(4):433—447. (In Russ.). https://doi.org/10.17516/1999-494X-0324

7. Merck I., O’Neil, Ann Smith. The Merck index: An encyclopedia of chemicals, drugs, and biologicals. 13th ed. NJ: Whitehouse Station, 2001. 2564 p.

8. Vlassopoulos D., Wood S.A., Mucci A. Gold speciation in natural waters: II. The importance of organic complexing—experiments with some simple model ligands. Geochimica et Cosmochimica Acta. 1990;54(6):1575—1586. https://doi.org/10.1016/0016-7037(90)90392-X

9. Perea C.G., Restrepo O.J. Use of amino acids for gold dissolution. Hydrometallurgy. 2018;177:79—85. https://doi.org/10.1016/j.hydromet.2018.03.002

10. Brown D.H., Smith W.E., Fox P., Sturrock R.D. The reactions of gold (0) with amino acids and the significance of these reactions in the biochemistry of gold. Inorganica Chimica Acta. 1982;67:27—30. https://doi.org/10.1016/S0020-1693(00)85035-5

11. Marsden J., House I. The chemistry of gold extraction. 2nd ed. Littleton, Colorado, USA: Society for Mining, Metallurgy, and Exploration, 2006. 138 p. https://doi.org/10.1007/BF03215543

12. Sadia Ilyas, Jae-chun Lee. Gold metallurgy and the environment. 1st ed. Boca Raton, FL: Environmental Science, Geology, 2018. 232 р.

13. Nam K.S., Jung B.H., An J.W., Ha T.J., Tran T., Kim M.J. Use of chloride—hypochlorite leachants to recover gold from tailing. International Journal of Mineral Processing. 2008;86(1-4):131—140. https://doi.org/10.1016/j.minpro.2007.12.003

14. Seisko S., Lampinen M., Aromaa J., Laari A., Koiranen T., Lundström M. Kinetics and mechanisms of gold dissolution by ferric chloride leaching. Minerals Engineering. 2018;115:131—141. https://doi.org/10.1016/j.mineng.2017.10.017

15. Pesic B., Sergent R.H. A rotating disk study of gold dissolution by bromine. JOM. 1991;43(12):35—37. https://doi.org/10.1007/BF03223146

16. Qi P.H., Hiskey J.B. Dissolution kinetics of gold in iodide solutions. Hydrometallurgy. 1991;27(1):47—62. https://doi.org/10.1016/0304-386X(91)90077-Y

17. Ojeda M.W., Perino E., Ruiz M.C. Gold extraction by chlorination using a pyrometallurgical process. Minerals Engineering. 2009;22(4):409—411. https://doi.org/10.1016/j.mineng.2008.09.002

18. Dosmukhamedov N., Kaplan V., Zholdasbay E., Argyn A., Kuldeyev E., Koishina G., Tazhiev Y. Chlorination treatment for gold extraction from refractory gold-copper-arsenic-bearing concentrates. Sustainability. 2022; 14(17):11019. https://doi.org/10.3390/su141711019

19. Yakoumis I., Panou M., Moschovi A.M., Panias D. Recovery of platinum group metals from spent automotive catalysts: A review. Cleaner Engineering and Technology. 2021;3:100112. https://doi.org/10.1016/j.clet.2021.100112

20. Puvvada G.V.K., Sridhar R., Lakshmanan V.I. Chloride metallurgy: PGM recovery and titanium dioxide production. JOM. 2003;55(8):38—41. https://doi.org/10.1007/s11837-003-0103-1

21. Baghalha M. Leaching of an oxide gold ore with chloride/hypochlorite solutions. International Journal of Mineral Processing. 2007;82(4):178—186. https://doi.org/10.1016/j.minpro.2006.09.001

22. Rinne M., Elomaa H., Seisko S., Lundstrom M. Direct cupric chloride leaching of gold from refractory sulfide ore: process simulation and life cycle assessment. Mineral Processing and Extractive Metallurgy Review. 2022;43(5):598—609. https://doi.org/10.1080/08827508.2021.1910510

23. Karppinen A., Seisko S., Nevatalo L., Wilson B.P., Yliniemi K., Lundström M. Gold recovery from cyanidation residue by chloride leaching and carbon adsorption — preliminary results from CICL process. Hydrometallurgy. 2024;226:106304. https://doi.org/10.1016/j.hydromet.2024.106304

24. Niu H., Yang H., Tong L. Research on gold leaching of carbonaceous pressure-oxidized gold ore via a highly effective, green and low toxic agent trichloroisocyanuric acid. Journal of Cleaner Production. 2023;419: 138062. https://doi.org/10.1016/j.jclepro.2023.138062

25. Feng F., Sun Y., Rui J., Yu L., Liu J., Zhang N., Zhao M., Wei L., Lu C., Zhao J., Zhang Q., Li X. Study of the “oxidation-complexation” coordination composite ionic liquid system for dissolving precious metals. Applied Sciences. 2020;10(10):3625. https://doi.org/10.3390/app10103625

26. Kenzhaliyev B., Koizhanova A., Surkova T., Fischer D., Azlan M.N., Atanova O., Magomedov D., Yerdenova M., Abdyldayev N. Extraction of gold from gravity-flotation concentrates via surfactant and oxidation reagents. Discover Applied Sciences. 2024;6(11):598. https://doi.org/10.1007/s42452-024-06281-7

27. Kenzhaliyev B.K., Tussupbayev N.K., Abdykirova G.Z., Koizhanova A.K., Fischer D.Y., Baltabekova Z.A., Samenova N.O. Evaluation of the efficiency of using an oxidizer in the leaching process of gold-containing concentrate. Processes. 2024;12(5):973. https://doi.org/10.3390/pr12050973

28. Zhang G., Huang Y., Xiong Z., Ge F., Li Y., Tan J., Zha R. Gold recovery from WPCB gold finger using water-soluble organic leaching agent sodium dichloroisocyanurate. Sustainability. 2025;17(6):2415. https://doi.org/10.3390/su17062415

29. Wahman D.G., Alexander M.T., Dugan A.G. Chlorinated cyanurates in drinking water: Measurement bias, stability, and disinfectant byproduct formation. AWWA Water Science. 2019;1(2):e1133. https://doi.org/10.1002/aws2.1133

30. Lobanov V.G., Naumov K.D., Kolmachikhina O.B., Makovskaya O.Yu., Khabibullina R.E., Kolmachikhina E.B. Method of extracting gold from gold-containing raw materials: Patent 2758915 (RF).

31. Lobanov V.G., Khabibulina R.E., Kolmachikhina O.B., Makovskaia O.I. Selection of a leaching system for extraction gold from the Byngovskoe deposits ore. iPolytech Journal. 2022; 26(4):688—696. (In Russ.). https://doi.org/ 10.21285/1814-3520-2022-4-688-696

32. Khabibullina R. E., Lobanov V. G. Environmentally friendly technology of gold leaching from man-made raw materials. In: Actual problems of the development of technical sciences. Еkaterinburg: Ministry of Education and Youth Policy of the Sverdlovsk Region, 2021. Р. 31– 35. (In Russ.).

33. Whitney R.P., Vivian J.E. Solubility of chlorine in Water. Industrial & Engineering Chemistry. 1941;33(6):741—744. https://doi.org/10.1021/ie50378a014

34. Jacqueline I. Kroschwitz Kirk-Othmer encyclopedia of chemical technology. 5th ed. Wiley-Interscience, 2004. 896 p.


Review

For citations:


Khabibulina R.E., Kolmachikhina E.B., Lobanov V.G., Kolmachikhina O.B. Investigation of the behavior of sodium dichloroisocyanurate in aqueous solutions. Izvestiya. Non-Ferrous Metallurgy. 2025;(3):74-84. https://doi.org/10.17073/0021-3438-2025-3-74-84

Views: 13


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)