Investigation of nitric acid dissolution of stibnite in the presence of tartaric acid
https://doi.org/10.17073/0021-3438-2025-3-44-53
Abstract
This study explores the nitric acid leaching of stibnite in the presence of tartaric acid, which acts as a complexing agent. The proposed approach is of considerable interest, as antimony is widely used across industries, from electronics to alloying applications. Thermodynamic analysis showed that nitric acid dissolution of stibnite inevitably leads to the formation of antimony oxides, which markedly reduces the extraction of the target metal into solution. To counteract these losses and enhance process efficiency, tartaric acid was introduced as an additive. The results demonstrated that tartaric acid promotes the formation of stable complexes with antimony ions, thereby retaining the metal in solution and minimizing the risk of oxide precipitation. Experimental design analysis revealed that the mass ratio of tartaric acid to antimony and the nitric acid concentration exert a stronger influence on leaching efficiency than temperature and leaching duration. Optimal conditions were established, achieving an antimony extraction of 87 %: temperature 35 °C, nitric acid concentration 5 mol/dm3 , leaching time 45 min, and a tartaric acid-to-antimony mass ratio of 4.5 : 1.0.
About the Authors
O. A. DizerRussian Federation
Oleg A. Dizer – Cand. Sci. (Eng.), Senior Researcher of
the Laboratory of advanced technologies in non-ferrous
and ferrous metals raw materials processing
19 Mira Str., Ekaterinburg 620002
D. I. Golovkin
Russian Federation
Dmitry I. Golovkin – Cand. Sci. (Eng.), Junior Researcher
of the Laboratory of advanced technologies in non-ferrous and ferrous metals raw materials processing
19 Mira Str., Ekaterinburg 620002
Yu. E. Shklyaev
Russian Federation
Yuri E. Shklyaev – Research Engineer of the Laboratory
of advanced technologies in non-ferrous and ferrous metals raw materials processing
19 Mira Str., Ekaterinburg 620002
D. A. Rogozhnikov
Russian Federation
Denis A. Rogozhnikov – Dr. Sci. (Eng.), Head of the Laboratory of advanced technologies in non-ferrous and ferrous metals raw materials processing
19 Mira Str., Ekaterinburg 620002
References
1. Moosavi-Khoonsari E., Mostaghel S., Siegmund A., Cloutier J-P. A review on pyrometallurgical extraction of antimony from primary resources: Current practices and evolving processes. Processes. 2022;10:1590. https://doi.org/10.3390/pr10081590
2. Multani R.S., Feldmann T., Demopoulos G.P. Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options. Hydrometallurgy. 2016;164:141—53. https://doi.org/10.1016/j.hydromet.2016.06.014
3. Dembele S., Akcil A., Panda S. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite. Minerals Engineering. 2022;175:107304. https://doi.org/10.1016/j.mineng.2021.107304
4. Ye L., Ouyang Z., Chen Y., Chen Y., Xiao L. Sulfur fixation and reduction roasting of stibnite for clean extraction of antimony by a combined metallurgy and beneficiation process. Minerals Engineering. 2019;144:106049. https://doi.org/10.1016/j.mineng.2019.106049
5. Zekavat M., Yoozbashizadeh H., Khodaei A. Leaching of antimony from stibnite ore in KOH solution for sodium pyroantimonate production: Systematic optimization and kinetic study. Thermodynamic Optimization of Critical Metals Processing and Recovery. 2021;73:903—912. https://doi.org/10.1007/s11837-020-04531-8
6. Aghazadeh S., Abdollahi H., Gharabaghi M., Mirmohammadi M. Selective leaching of antimony from tetrahedrite rich concentrate using alkaline sulfide solution with experimental design: Optimization and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers. 2021;119:298—312. https://doi.org/10.1016/j.jtice.2021.01.021
7. Sudova M., Sisol M., Kanuchova M., Marcin M., Kurty J. Environmentally friendly leaching of antimony from mining residues using deep eutectic solvents: Optimization and sustainable extraction strategies. Processes. 2024;12(3):555. https://doi.org/10.3390/pr12030555
8. Wang X., Yang Y., Tao L., He M. Antimonite oxidation and adsorption onto two tunnel-structured manganese oxides: Implications for antimony mobility. Chemical Geology. 2021;579:120336. https://doi.org/10.1016/j.chemgeo.2021.120336
9. Ye L., Ouyang Z., Chen Y., Chen Y. Ferric chloride leaching of antimony from stibnite. Hydrometallurgy. 2019;186:210—217. https://doi.org/10.1016/j.hydromet.2019.04.021
10. Xiang L., Liu C., Liu D., Ma L., Qiu X., Wang H., Liu X. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1. Journal of Environmental Sciences. 2022;111:273—281. https://doi.org/10.1016/j.jes.2021.03.042
11. Zhang F., Cui Y., He X., Lv C., Li L., Zhang J., Nan J. Selective alkaline leaching of antimony from Low-grade refractory gold ores and process optimization. Minerals Engineering. 2023;201:108198. https://doi.org/10.1016/j.mineng.2023.108198
12. Cornelis G., Gerven T., Vandecasteete C. Antimony leaching from MSWI bottom ash: Modelling of the effect of pH and carbonation. Waste Management. 2012;32(2):278—286. https://doi.org/10.1016/j.wasman.2011.09.018
13. Madkur L.H. Thermodynamic behaviour of complex antimonite ore for electrodeposition of metal value. Journal de Chimie Physique. 1997;94:620—634. https://doi.org/10.1051/jcp/1997940620
14. Smincakova E., Raschman P. Leaching of natural stibnite using Na2S and NaOH solutions. International Journal of Energy Engineering. 2011;1(2):85—89. https://doi.org/ 10.5963/IJEE0102006
15. Rogozhnikov D., Dizer O., Karimov K., Zakhar’yan S. Nitric acid leaching of the copper-bearing arsenic sulphide concentrate of Akzhal. Tsvetnye Metally. 2020;8:11—17. https://doi.org/10.17580/tsm.2020.08.02
16. Kuzas E., Rogozhnikov D., Dizer O., Karimov K., Shoppert A., Suntsov A., Zhidkov I. Kinetic study on arsenopyrite dissolution in nitric acid media by the rotating disk method. Minerals Engineering. 2022;187:107770. https://doi.org/10.1016/j.mineng.2022.107770
17. Rusalev R., Rogozhnikov D., Dizer O., Golovkin D., Karimov K. Development of a two-stage hydrometallurgical process for gold—antimony concentrate treatment from the olimpiadinskoe deposit. Materials. 2023;16:4767. https://doi.org/10.3390/ma16134767
18. Dizer O., Rogozhnikov D., Karimov K., Kuzas E., Suntsov A. Nitric acid dissolution of tennantite, chalcopyrite and sphalerite in the presence of Fe (III) ions and FeS2. Materials. 2022;15:1545. https://doi.org/10.3390/ma15041545
19. Madkour L.H., Salem I.A. Electrolytic recovery of antimony from natural stibnite ore. Hydrometallurgy. 1996;43:265—75. https://doi.org/10.1016/0304-386X(95)00113-U
20. Davidenko P.S., Troshkin A.M., Melnikov Yu.T. Kinetics of interaction of antimony sulfide with nitric acid solution. Izvestiya. Non-Ferrous Metallurgy. 2006;(1):24—27. (In Russ.).
21. Besold J., Kumar N., Scheinost A., Pacheco J., Fendorf S., Planer-Friedrich B. Antimonite complexation with thiol and carboxyl/phenol groups of peat organic matter. Environmental Science & Technology. 2019;53(9):5005—5015. https://doi.org/10.1021/acs.est.9b00495
22. Shabdanova E.A. The use of organic oxyacids in the processes of leaching and complexation of metals. Izvestiya Vuzov (Kyrgyzstan). 2015;2:95—102. (In Russ.).
23. Larba R., Boukerche I., Alane N., Habbache N., Djerad S., Tifouti L. Citric acid as an alternative lixiviant for zinc oxide dissolution. Hydrometallurgy. 2013;134— 135:117—23. https://doi.org/10.1016/j.hydromet.2013.02.002
24. Oke E.A., Potgieter H., Mondlane F., Skosana N.P., Teimouri S., Nyembwe J.K. Concurrent leaching of copper and cobalt from a copper—cobalt ore using sulfuric and organic acids. Minerals Engineering. 2024;216:108853. https://doi.org/10.1016/j.mineng.2024.108853
25. Borda J., Torres R. Effect of pretreatments to improve nickel leaching from laterites in carboxylic media: Mechanism and kinetic model. South African Journal of Chemical Engineering. 2023;46:12—21. https://doi.org/10.1016/j.sajce.2023.07.001
26. Tzeferis P.G., Agatzini-Leonardou S. Leaching of nickel and iron from Greek non-sulphide nickeliferous ores by organic acids. Hydrometallurgy. 1994;36:345—60. https://doi.org/10.1016/0304-386X(94)90031-0
Review
For citations:
Dizer O.A., Golovkin D.I., Shklyaev Yu.E., Rogozhnikov D.A. Investigation of nitric acid dissolution of stibnite in the presence of tartaric acid. Izvestiya. Non-Ferrous Metallurgy. 2025;(3):44-53. https://doi.org/10.17073/0021-3438-2025-3-44-53