Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Oxidative degradation of lignosulfonates during pressure leaching of zinc concentrates

https://doi.org/10.17073/0021-3438-2025-3-28-36

Abstract

This study investigates the effect of preliminary autoclave oxidation with molecular oxygen (Т = 423 K, РО = 0.6 MPa, τ = 2 h) on lignosulfonates differing in chemical composition and molecular weight distribution. Oxidation resulted in a reduction of hydroxyl groups and an increase in carbonyl groups, along with marked changes in solution properties such as redox potential, pH, specific conductivity, and surface tension at the liquid–gas interface. The functional activity of the initial and oxidized lignosulfonates was compared in terms of their ability to remove elemental sulfur films from the sphalerite surface under high-temperature oxidative pressure leaching conditions. The findings show that oxidative treatment decreases the effectiveness of lignosulfonates by diminishing their surface activity.

About the Authors

T. N. Lugovitskaya
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Tatyana N. Lugovitskaya – Cand. Sci. (Eng.), Associate
Professor-Researcher, Department of the metallurgy of nonferrous metals (NFM) 

19 Mira Str., Ekaterinburg 620002



O. S. Anisimova
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Olga S. Anisimova – Cand. Sci. (Eng.), Associate Professor of the Department of NFM

19 Mira Str., Ekaterinburg 620002



D. A. Rogozhnikov
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Denis A. Rogozhnikov – Dr. Sci. (Eng.), Head of the Scientific, Laboratory of advanced technologies for complex processing of mineral and man-made raw materials of non-ferrous and ferrous metals

19 Mira Str., Ekaterinburg 620002



References

1. Jorjani E., Ghahreman A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues: A review. Hydrometallurgy. 2017;(171):333—343. https://doi.org/10.1016/j.hydromet.2017.06.011

2. Kolmachikhina E.B., Lugovitskaya T.N., Tretiak M.A., Rogozhnikov D.A. Surfactants and their mixtures under conditions of autoclave sulfuric acid leaching of zinc concentrate: Surfactant selection and laboratory tests. Transactions of Nonferrous Metals Society of China. 2023;33(11):3529—3543. https://doi.org/10.1016/S1003-6326(23)66352-6

3. Wang Y., Wang H., Li X., Zheng C. Study on the improvement of the zinc pressure leaching process. Hydrometallurgy. 2020;(195):105400. https://doi.org/10.1016/j.hydromet.2020.105400

4. Qiang L., Cun-xiong L., Zhi-hui G., Chang-wen L., Qi-liang W. Study on pre-oxidation of silver concentrate and leaching behaviour of Zn, Cu and In during oxygenpressure leaching. Hydrometallurgy. 2024;(228):106358. https://doi.org/10.1016/j.hydromet.2024.106358

5. Collins M. J. Autoclave leaching. Treatise on Process Metallurgy. 2025;(2B): 373—388. https://doi.org/10.1016/B978-0-443-40294-4.00030-X

6. Tong L., Dreisinger D. Interfacial properties of liquid sulfur in the pressure leaching of nickel concentrate. Minerals Engineering. 2009;22(5):456—461. https://doi.org/10.1016/j.mineng.2008.12.003

7. Dizer O., Rogozhnikov D., Karimov K., Kuzas E., Suntsov A. Nitric acid dissolution of tennantite, chalcopyrite and sphalerite in the presence of Fe (III) ions and FeS2. Materials. 2022;15(4):1545. https://doi.org/10.3390/ma15041545

8. Xi J., Liao Y., Ji G., Liu Q., Wu Y. Mineralogical characteristics and oxygen pressure acid leaching of low-grade polymetallic complex chalcopyrite. Journal of Sustainable Metallurgy. 2022;8(4):1628—1638. https://doi.org/10.1007/s40831-022-00594-w

9. Ai C., Wang S., Liu C., Li T. Experimental study on the influence of surfactants on ore surface wettability. ACS Omega. 2023;9(1):1056—1068. https://doi.org/10.1021/acsomega.3c07218

10. Lugovitskaya T., Rogozhnikov D. Surface phenomena with the participation of sulfite lignin under pressure leaching of sulfide materials. Langmuir. 2023;39(16):5738—5751. https://doi.org/10.1021/acs.langmuir.2c03481

11. Jiang T., Jiao G., Wang P., Zhu D., Liu Z., Liu Z. Lignosulphonates in zinc pressure leaching: Decomposition behaviour and effect of lignosulphonates’ characteristics on leaching performance. Journal of Cleaner Production. 2024;(435):140355. https://doi.org/10.1016/j.jclepro.2023.140355

12. Yang S., Li Y., Yang Y., Liu R., Zhao Y. Behavior of calcium lignosulfonate under oxygen pressure acid leaching condition. Hydrometallurgy. 2024;(227):106317. https://doi.org/10.1016/j.hydromet.2024.106317

13. Lugovitskaya T.N., Rogozhnikov D.A. Construction of lignosulphonate-containing polymersomes and prospects for their use for elemental sulfur encapsulation. Journal of Molecular Liquids. 2024;(400):124612. https://doi.org/10.1016/j.molliq.2024.124612

14. Yang D., Qiu X., Pang Y., Zhou M. Physicochemical properties of calcium lignosulfonate with different molecular weights as dispersant in aqueous suspension. Journal of Dispersion Science and Technology. 2008;(29(9)): 1296—1303. https://doi.org/10.1080/01932690701866534

15. Fink F., Emmerling F., Falkenhagen J. Identification and classification of technical lignins by means of principle component analysis and k-Nearest neighbor algorithm. Chemistry-Methods. 2021;(1(8)):354—361. https://doi.org/10.1002/cmtd.202100028

16. Shen W., Zhu H., Cheng X., Li X. Synthesis of mesoporous niobium phosphosilicate with high catalytic activity in the conversion of glucose to 5-hydroxymethylfurfural in water solvent. Biofuels, Bioproducts and Biorefining. 2024;(18(6)):1994—2004. http://dx.doi.org/10.1002/bbb.2677

17. Ge Y., Li D., Li Z. Effects of lignosulfonate structure on the surface activity and wettability to a hydrophobic powder. BioResources. 2014;(9(4)):7119—7127.

18. Rana D., Neale G., Hornof V. Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate. Colloid and Polymer Science. 2002;(280):775—778. https://doi.org/10.1007/s00396-002-0687-y

19. Chong A.S., Manan M.A., Idris A.K. Readiness of lignosulfonate adsorption onto montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;(628):127318. https://doi.org/10.1016/j.colsurfa.2021.127318

20. Bolatbaev K.N., Lugovitskaya T.N., Kolosov A.V., Naboichenko S.S. Fundamental aspects of the behavior of various lignosulfonates in solutions. Russian Journal of Applied Chemistry. 2010;83(9);1553—1557. https://doi.org/10.1134/S1070427210090090

21. Shi Z., Xu G., Deng J., Dong M., Murugadoss V., Liu C., Guo Z. Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chemistry Letters and Reviews. 2019;(12(3)):235—243. https://doi.org/10.1080/17518253.2019.1627428

22. Karpukhina E.A., Volkov D.S., Proskurnin M.A. Quantification of lignosulfonates and humic components in mixtures by ATR FTIR spectroscopy. Agronomy. 2023; 13(4):1141. https://doi.org/10.3390/agronomy13041141

23. Xu F., Yu J., Tesso T., Dowell F., Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Applid Energy. 2013; (104):801—809. https://doi.org/10.1016/j.apenergy.2012.12.019


Review

For citations:


Lugovitskaya T.N., Anisimova O.S., Rogozhnikov D.A. Oxidative degradation of lignosulfonates during pressure leaching of zinc concentrates. Izvestiya. Non-Ferrous Metallurgy. 2025;(3):28-36. https://doi.org/10.17073/0021-3438-2025-3-28-36

Views: 14


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)