Oxidative degradation of lignosulfonates during pressure leaching of zinc concentrates
https://doi.org/10.17073/0021-3438-2025-3-28-36
Abstract
This study investigates the effect of preliminary autoclave oxidation with molecular oxygen (Т = 423 K, РО₂ = 0.6 MPa, τ = 2 h) on lignosulfonates differing in chemical composition and molecular weight distribution. Oxidation resulted in a reduction of hydroxyl groups and an increase in carbonyl groups, along with marked changes in solution properties such as redox potential, pH, specific conductivity, and surface tension at the liquid–gas interface. The functional activity of the initial and oxidized lignosulfonates was compared in terms of their ability to remove elemental sulfur films from the sphalerite surface under high-temperature oxidative pressure leaching conditions. The findings show that oxidative treatment decreases the effectiveness of lignosulfonates by diminishing their surface activity.
Keywords
About the Authors
T. N. LugovitskayaRussian Federation
Tatyana N. Lugovitskaya – Cand. Sci. (Eng.), Associate
Professor-Researcher, Department of the metallurgy of nonferrous metals (NFM)
19 Mira Str., Ekaterinburg 620002
O. S. Anisimova
Russian Federation
Olga S. Anisimova – Cand. Sci. (Eng.), Associate Professor of the Department of NFM
19 Mira Str., Ekaterinburg 620002
D. A. Rogozhnikov
Russian Federation
Denis A. Rogozhnikov – Dr. Sci. (Eng.), Head of the Scientific, Laboratory of advanced technologies for complex processing of mineral and man-made raw materials of non-ferrous and ferrous metals
19 Mira Str., Ekaterinburg 620002
References
1. Jorjani E., Ghahreman A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues: A review. Hydrometallurgy. 2017;(171):333—343. https://doi.org/10.1016/j.hydromet.2017.06.011
2. Kolmachikhina E.B., Lugovitskaya T.N., Tretiak M.A., Rogozhnikov D.A. Surfactants and their mixtures under conditions of autoclave sulfuric acid leaching of zinc concentrate: Surfactant selection and laboratory tests. Transactions of Nonferrous Metals Society of China. 2023;33(11):3529—3543. https://doi.org/10.1016/S1003-6326(23)66352-6
3. Wang Y., Wang H., Li X., Zheng C. Study on the improvement of the zinc pressure leaching process. Hydrometallurgy. 2020;(195):105400. https://doi.org/10.1016/j.hydromet.2020.105400
4. Qiang L., Cun-xiong L., Zhi-hui G., Chang-wen L., Qi-liang W. Study on pre-oxidation of silver concentrate and leaching behaviour of Zn, Cu and In during oxygenpressure leaching. Hydrometallurgy. 2024;(228):106358. https://doi.org/10.1016/j.hydromet.2024.106358
5. Collins M. J. Autoclave leaching. Treatise on Process Metallurgy. 2025;(2B): 373—388. https://doi.org/10.1016/B978-0-443-40294-4.00030-X
6. Tong L., Dreisinger D. Interfacial properties of liquid sulfur in the pressure leaching of nickel concentrate. Minerals Engineering. 2009;22(5):456—461. https://doi.org/10.1016/j.mineng.2008.12.003
7. Dizer O., Rogozhnikov D., Karimov K., Kuzas E., Suntsov A. Nitric acid dissolution of tennantite, chalcopyrite and sphalerite in the presence of Fe (III) ions and FeS2. Materials. 2022;15(4):1545. https://doi.org/10.3390/ma15041545
8. Xi J., Liao Y., Ji G., Liu Q., Wu Y. Mineralogical characteristics and oxygen pressure acid leaching of low-grade polymetallic complex chalcopyrite. Journal of Sustainable Metallurgy. 2022;8(4):1628—1638. https://doi.org/10.1007/s40831-022-00594-w
9. Ai C., Wang S., Liu C., Li T. Experimental study on the influence of surfactants on ore surface wettability. ACS Omega. 2023;9(1):1056—1068. https://doi.org/10.1021/acsomega.3c07218
10. Lugovitskaya T., Rogozhnikov D. Surface phenomena with the participation of sulfite lignin under pressure leaching of sulfide materials. Langmuir. 2023;39(16):5738—5751. https://doi.org/10.1021/acs.langmuir.2c03481
11. Jiang T., Jiao G., Wang P., Zhu D., Liu Z., Liu Z. Lignosulphonates in zinc pressure leaching: Decomposition behaviour and effect of lignosulphonates’ characteristics on leaching performance. Journal of Cleaner Production. 2024;(435):140355. https://doi.org/10.1016/j.jclepro.2023.140355
12. Yang S., Li Y., Yang Y., Liu R., Zhao Y. Behavior of calcium lignosulfonate under oxygen pressure acid leaching condition. Hydrometallurgy. 2024;(227):106317. https://doi.org/10.1016/j.hydromet.2024.106317
13. Lugovitskaya T.N., Rogozhnikov D.A. Construction of lignosulphonate-containing polymersomes and prospects for their use for elemental sulfur encapsulation. Journal of Molecular Liquids. 2024;(400):124612. https://doi.org/10.1016/j.molliq.2024.124612
14. Yang D., Qiu X., Pang Y., Zhou M. Physicochemical properties of calcium lignosulfonate with different molecular weights as dispersant in aqueous suspension. Journal of Dispersion Science and Technology. 2008;(29(9)): 1296—1303. https://doi.org/10.1080/01932690701866534
15. Fink F., Emmerling F., Falkenhagen J. Identification and classification of technical lignins by means of principle component analysis and k-Nearest neighbor algorithm. Chemistry-Methods. 2021;(1(8)):354—361. https://doi.org/10.1002/cmtd.202100028
16. Shen W., Zhu H., Cheng X., Li X. Synthesis of mesoporous niobium phosphosilicate with high catalytic activity in the conversion of glucose to 5-hydroxymethylfurfural in water solvent. Biofuels, Bioproducts and Biorefining. 2024;(18(6)):1994—2004. http://dx.doi.org/10.1002/bbb.2677
17. Ge Y., Li D., Li Z. Effects of lignosulfonate structure on the surface activity and wettability to a hydrophobic powder. BioResources. 2014;(9(4)):7119—7127.
18. Rana D., Neale G., Hornof V. Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate. Colloid and Polymer Science. 2002;(280):775—778. https://doi.org/10.1007/s00396-002-0687-y
19. Chong A.S., Manan M.A., Idris A.K. Readiness of lignosulfonate adsorption onto montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;(628):127318. https://doi.org/10.1016/j.colsurfa.2021.127318
20. Bolatbaev K.N., Lugovitskaya T.N., Kolosov A.V., Naboichenko S.S. Fundamental aspects of the behavior of various lignosulfonates in solutions. Russian Journal of Applied Chemistry. 2010;83(9);1553—1557. https://doi.org/10.1134/S1070427210090090
21. Shi Z., Xu G., Deng J., Dong M., Murugadoss V., Liu C., Guo Z. Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chemistry Letters and Reviews. 2019;(12(3)):235—243. https://doi.org/10.1080/17518253.2019.1627428
22. Karpukhina E.A., Volkov D.S., Proskurnin M.A. Quantification of lignosulfonates and humic components in mixtures by ATR FTIR spectroscopy. Agronomy. 2023; 13(4):1141. https://doi.org/10.3390/agronomy13041141
23. Xu F., Yu J., Tesso T., Dowell F., Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Applid Energy. 2013; (104):801—809. https://doi.org/10.1016/j.apenergy.2012.12.019
Review
For citations:
Lugovitskaya T.N., Anisimova O.S., Rogozhnikov D.A. Oxidative degradation of lignosulfonates during pressure leaching of zinc concentrates. Izvestiya. Non-Ferrous Metallurgy. 2025;(3):28-36. https://doi.org/10.17073/0021-3438-2025-3-28-36