Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Optimization of low-temperature sulfuric acid leaching of chalcopyrite and pyrite

https://doi.org/10.17073/0021-3438-2025-3-16-27

Abstract

This study presents the results of oxidative leaching of chalcopyrite (CuFeS2) and pyrite (FeS2) in a sulfuric acid medium at low temperature in the presence of copper (Cu2+) and iron (Fe3+) ions. Using orthogonal experimental design, the optimal conditions were identified to maximize sulfide matrix decomposition and valuable metal recovery. Experiments were conducted at a constant temperature of 100 °C. The parameters investigated included partial oxygen pressure (0.2–0.75 MPa), concentrations of sulfuric acid (10–50 g/dm3), Fe3+ ions (2–10 g/dm3), Cu2+ ions (1–3 g/dm3), and leaching time (60–240 min). The composition of the feed minerals and leach products was analyzed by X-ray fluorescence (XRF) analysis, X-ray diffraction (XRD) analysis, and atomic absorption spectrometry (AAS). Maximum copper recovery from chalcopyrite (55 %) was achieved under the following conditions: O2 partial pressure of 0.25 MPa, initial concentrations of H2SO4 – 50 g/dm3, Cu2+ – 1 g/dm3, Fe3+ – 2.5 g/dm3, and leaching time – 240 min. The maximum degree of pyrite oxidation (56 %) was obtained at an O2 partial pressure of 0.75 MPa, initial concentrations of H2SO4 – 50 g/dm3, Cu2+ – 2 g/dm3, and Fe3+ – 10 g/dm3. The results showed that leaching time and oxygen pressure have the greatest effect on chalcopyrite and pyrite decomposition (p < 0.05). The interaction between Fe3+ and Cu2+ ions was also established: excess Fe3+ (>10 g/dm3) leads to hydrolysis and decreases chalcopyrite leaching efficiency, whereas Cu2+ promotes partial formation of secondary copper sulfides. Regression equations (R2 = 0.98 for chalcopyrite and R2 = 0.96 for pyrite) were derived, providing an adequate description of the process.

About the Authors

M. A. Tretiak
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Maksim A. Tretiak – Cand. Sci. (Eng.), Junior Researcher,
Scientific laboratory of advanced technologies for complex processing of mineral and man-made raw materials of nonferrous and ferrous metals

19 Mira Str., Еkaterinburg 620002



K. A. Karimov
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Kirill A. Karimov – Cand. Sci. (Eng.), Senior Researcher,
Scientific laboratory of advanced technologies for complex processing of mineral and man-made raw materials of nonferrous and ferrous metals

19 Mira Str., Еkaterinburg 620002



U. R. Sharipova
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Ulyana R. Sharipova – Master’s Student, Research Engineer, Scientific laboratory of advanced technologies for complex processing of mineral and man-made raw materials of nonferrous and ferrous metals

19 Mira Str., Еkaterinburg 620002



A. V. Kritsky
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Aleksey V. Kritsky – Cand. Sci. (Eng.) Researcher, Scientific laboratory of advanced technologies for complex processing of mineral and man-made raw materials of non-ferrous and ferrous metals

19 Mira Str., Еkaterinburg 620002



D. A. Rogozhnikov
Ural Federal University n.a. the First President of Russia B.N. Yeltsin (UrFU)
Russian Federation

Denis A. Rogozhnikov – Dr. Sci. (Eng.), Head of the Scientific laboratory of perspective technologies for complex processing of mineral and man-made raw materials of non-ferrous and ferrous metals

19 Mira Str., Еkaterinburg 620002



References

1. Shaibakova L. F. Global and Russian trends in the innovative development of copper production. Regional’naya ekonomika i upravlenie: Elektronnyi nauchnyi zhurnal. 2018;3(55):5. (In Russ.).

2. Kondratiev V.B. Base metals: prospects in 2021. Gornaya promishlennost’. 2021;1:14—22. (In Russ.). https://doi.org/10.30686/1609-9192-2021-1-14-22

3. Vira D.Yu. Prospects for the development of Russian copper industry markets under new conditions. Vestnik Altayskoy akademii ekonomiki i prava. 2024;3(3):344—354. (In Russ.). https://doi.org/10.17513/vaael.3354

4. Khopunov E.A. Modern directions of mineral raw materials processing. Natsional’naya Assotsiatsiya Uchenykh (NAU). 2015;4-7(9):89—92. (In Russ.).

5. Chanturia V.A., Shadrunova I.V., Gorlova O.E., Kolodezhnaya E.V. Development of technological innovations for deep and complex processing of man-made raw materials in the context of new economic challenges. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o zemle. 2020;1:159—171. (In Russ.). https://doi.org/10.46689/2218-5194-2020-1-1-159-171

6. Shumskaya E.N., Poperechnikova O.Yu., Tikhonov N.O. Development of technology for processing refractory pyrite polymetallic ore of Korbakhinskoye deposit. Gornyy zhurnal. 2014;(11):78—83. (In Russ.).

7. Shneerson Ya.M., Naboychenko S.S. Trends in the development of autoclave hydrometallurgy of nonferrous metals. Tsvetnye metally. 2011;(3):15—20. (In Russ.).

8. Lapshin D.A., Shneerson Ya.M. Autoclave processes in platinum metals hydrometallurgy. Tsvetnye metally. 2014;(5):39—43. (In Russ.).

9. Lapin A.Yu. History of development and implementation of autoclave-hydrometallurgical technology for processing nickel-pyrrhotite concentrates. Tsvetnye metally. 2020;(9):57—64. (In Russ.).

10. Padilla R., Vega D., Ruiz M.C. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media. Hydrometallurgy. 2007;86(1-2):80—88. https://doi.org/10.1016/j.hydromet.2006.10.006

11. McDonald R.G., Muir D.M. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy. 2007;86(3-4):191—205. https://doi.org/10.1016/j.hydromet.2006.11.015

12. Rusanen L., Aromaa J., Forsen O. Pressure oxidation of pyrite-arsenopyrite refractory gold concentrate. Physicochemical Problems of Mineral Processing. 2013;49:101—109. https://doi.org/10.5277/ppmp130110

13. Shoppert A., Valeev D., Loginova I., Pankratov D. Low-temperature treatment of boehmitic bauxite using the Bayer reductive method with the formation of highiron magnetite concentrate. Materials. 2023;16(13):4678. https://doi.org/10.3390/ma16134678

14. Vasilyeva A.A., Boduen A.Ya., Vasilyev R.E. Analysis of the possibility of using hydrometallurgical methods to improve copper concentrate processing. Vestnik IrGTU. 2022;26(2):320—335. (In Russ.).

15. Epiforov A.V., Nabiulin R.N., Balikov S.V. Lowtemperature autoclave oxidation of refractory sulfide goldcopper flotation concentrates followed by sulfite leaching of precious metals from oxidized cakes. Izvestiya vuzov. Prikladnaya khimiya i biotekhnologiya. 2014;3(8):31—38. (In Russ.).

16. Rogozhnikov D.A., Zakharian S.V., Dizer O.A., Karimov K.A. Nitric acid leaching of the copper-bearing arsenic sulphide concentrate of Akzhal. Tsvetnye Metally. 2020;8:11—16. https://doi.org/10.17580/tsm.2020.08.02

17. Gordeev D.V., Petrov G.V., Nikitina T.Yu. Application of two-stage sulfuric and chloride leaching for processing sulfide polymetallic concentrates. Vestnik Magnitogorskogo gosudarstvennogo universiteta imeni G.I. Nosova. 2022;20(3):13—25. (In Russ.).

18. Rasskazova A.V., Sekisov A.G., Rasskazov M.I. Nitricnitrite oxidation of copper-porphyry ores followed by activation chloride-sulfuric acid leaching of copper and noble metals. GIAB. 2023;9:130—140. (In Russ.).

19. Córdoba E.M., Muñoz J.A., Blázquez M.L., González F., Ballester A. Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy. 2008;93(3-4): 81-87. https://doi.org/10.1016/j.hydromet.2008.04.015

20. Nourmohamadi H., Esrafili M.D., Aghazadeh V., Rezai B. The influence of Ag+ cation on elemental sulfur passive layer and adsorption behavior of chalcopyrite toward Fe3+ and Fe2+ ions: Insights from DFT calculations and molecular dynamics simulations. Physica B: Condensed Matter. 2022;627:413611. https://doi.org/10.1016/j.physb.2021.413611

21. Fomchenko N.V., Muravyov M.I. Effect of sulfide mineral content in copper-zinc concentrates on the rate of leaching of non-ferrous metals by biogenic ferric iron. Hydrometallurgy. 2019;185:82—87. https://doi.org/10.1016/j.hydromet.2019.02.002

22. Dizer O., Rogozhnikov D., Karimov K., Kuzas E., Suntsov A. Nitric acid dissolution of tennantite, chalcopyrite and sphalerite in the presence of Fe(III) ions and FeS2. Materials. 2022;15(4):1545. https://doi.org/10.3390/ma15041545

23. Rogozhnikov D., Karimov K., Shoppert A., Dizer O., Naboichenko S. Kinetics and mechanism of arsenopyrite leaching in nitric acid solutions in the presence of pyrite and Fe(III) ions. Hydrometallurgy. 2021;199:105525. https://doi.org/10.1016/j.hydromet.2020.105525

24. Vasilyev V.I. Titrimetric and gravimetric methods of analysis: Textbook for university students. Moscow: Drofa, 2005. 366 p. (In Russ.).

25. Shneerson Ya.M., Frumina L.M., Ivanovsky V.V., Kasatkin S.V. Kinetics of oxidative pressure leaching of copper sulfide minerals. Sbornik nauchnih trudov instituta Gipronickel, Leningrad: Gipronickel, 1981. P. 53–61. (In Russ.).

26. Córdoba E.M., Muñoz J.A., Blázquez M.L., González F., Ballester A. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometallurgy. 2008;93(3-4):106—115. https://doi.org/10.1016/j.hydromet.2007.11.005

27. Li Y., Kawashima N., Li J., Chandra A.P., Gerson A.R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Advances in Colloid and Interface Science. 2013;(197-198):1—32. https://doi.org/10.1016/j.cis.2013.03.004

28. Michael J. Nicol. A comparative study of the kinetics of the oxidation of iron (II) by oxygen in acidic media — mechanistic and practical implications. Hydrometallurgy. 2020;192:105246. https://doi.org/10.1016/j.hydromet.2020.105246


Review

For citations:


Tretiak M.A., Karimov K.A., Sharipova U.R., Kritsky A.V., Rogozhnikov D.A. Optimization of low-temperature sulfuric acid leaching of chalcopyrite and pyrite. Izvestiya. Non-Ferrous Metallurgy. 2025;(3):16-27. https://doi.org/10.17073/0021-3438-2025-3-16-27

Views: 11


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)