Influence of high-temperature oxidation kinetics of copper on the electrical properties of the melt
https://doi.org/10.17073/0021-3438-2025-3-7-15
Abstract
The kinetics of high-temperature oxidation of copper of various chemical compositions by gaseous oxygen follows a parabolic rate law within the temperature range of 350–1050 °C. For specialists engaged in the theory and practice of fire refining, of particular interest is the kinetics of copper oxidation over a broader temperature interval of 350–1160 °C. Within this range, the processes include oxidation of solid copper and its melting, oxidation of liquid copper by oxygen introduced into the melt, oxygen solubility in copper, and slag formation. The duration of high-temperature interaction between copper and oxygen has a considerable effect on both the technical and economic indicators of anode smelting and the electrical properties of copper. Therefore, investigating the kinetics of high-temperature oxidation of copper and its influence on the electrical properties of the metal is essential for the optimal organization of fire refining. In the temperature range of 1100–1200 °C, copper oxidation occurs predominantly due to oxygen introduced into the melt with air. The copper(I) oxide formed migrates from the zone of direct contact with gaseous oxygen into the depth of the melt with lower oxygen concentration, where it dissociates into copper and oxygen, thus increasing oxygen concentration in the melt. Overoxidation of copper and excessive saturation of the anode metal with gases lead to its transfer into slag in the form of oxides, to excessive consumption of resources and refractory materials, and to a deterioration of the electrical properties of the metal. To identify optimal oxidation modes and to assess the influence of copper oxidation kinetics on the electrical properties of the melt, a comparative analysis was conducted of the kinetic patterns of oxidation of solid and liquid copper of various chemical compositions under identical experimental conditions, using differential thermogravimetric analysis (DTA) and by surface blowing of the copper melt with an air mixture. The results show that copper samples oxidize at nearly the same rate and that the presence of impurities does not affect the process. All oxygen intended for copper (I) oxide formation dissolves in copper up to the thermodynamic limit (up to 12 % Cu2O). It was established that oxygen concentrations in the melt above 0.06% adversely affect the electrical properties of copper.
About the Authors
S. I. KholodRussian Federation
Sergey I. Kholod – Leading Engineer, Department of foundry and hardening technologies ; Deputy Head of the Department of metallurgy
V. P. Zhukov
Russian Federation
Vladimir P. Zhukov – Dr. Sci. (Eng.), Professor, Leading
Researcher
S. V. Mamyachenkov
Russian Federation
Sergey V. Mamyachenkov – Dr. Sci. (Eng.), Professor, Head of the Department of non-ferrous metallurgy
V. V. Rogachev
Russian Federation
Vladimir V. Rogachev – Cand. Sci. (Eng.), Associate Professor, Department of metallurgy of iron and alloys
References
1. Belousov V.V., Klimashin A.A, High-temperature oxidation of copper. Uspekhi khimii. 2013;3:3—6. (In Russ.).
2. Belousov A.A., Pastukhov E.A., Aleshina S.N. Effect of temperature, partial pressure of oxygen on the kinetics of oxidation of liquid copper. Rasplavy. 2003;2:3—6. (In Russ.).
3. Лисиенко В.Г., Холод С.И. Чесноков Ю.Н., Рогачев В.В., Киселев В.В. Устройство для производства анодной меди: Патент 2779418 (РФ). 2022.
4. Жуков В.П., Холод С.И., Демин А.И., Меньшиков В.А. Исследование кинетики окисления меди методом дифференциально-термографического анализа. В сб.: Современные тенденции в области теории и практики добычи и переработки минерального и техногенного сырья (06—07 ноября 2024) г. Екатеринбург: АО «Уралмеханобр», 2024. С. 284—287.
5. Ferapontov Yu.A., Putin S.B., Ferapontova L.L., Putin P.Yu. Study of kinetics of topochemical processes in non-isothermal mode by derivatographic method. Vestnik of TSTU. 2009;15(14):826—834. (In Russ.).
6. Ivanic L., Kochovski B. Study of oxygen transfer kinetics in copper. Tsvetnye metally. 1997;9:24—25. (In Russ.).
7. Сафаров Д. Д. Кинетика окисления сплавов на основе меди газовой фазой переменного состава: Дис. канд. хим. наук. Свердловск: ИМЕТ УрО РАН, 1983.
8. Martin T., Utigard T. The kinetigs and mechanism of molten copper oxidation by top blowing of oxygen. Journal of Metals. 2005;2:58—62.
9. Barton R.G., Вrimасоmbе J.K.. Influence of surface tensiоп-drivеn flоw оf the kinetics of охуgеn absorption in molten copper. Metallurgical Transactions A. 1977;8 В:417—427.
10. Lyamkin S.A., Tanutrov I.N., Sviridova M.N. Kinetics of oxidation of molten copper by gas phase oxygen. Rasplavy. 2013;2:83—89. (In Russ.).
11. Gerlach J., Schneider N., Wuth W. Oхуgеn absorption during blowing of molten Cu. Journal of Metals. 1972;25(11):1246—1251.
12. Avetissyan A.A., Chatilyan A.A., Kharatyan S.L. Kinetic features of the initial stages of high-temperature oxidation of copper. Khimicheskii zhurnal Armenii. 2013;3: 407—415. (In Russ.).
13. Lovshenko G. F., Khina B. B. Macrokinetic mathematical model of internal oxidation of copper-based alloys during annealing of mechanically alloyed compositions of the Cu—Al—CuO system. Vestnik Belorussko-Rossiiskogo universiteta. 2006;4(13):119—127.
14. Warrczok A., Thorstein A. Reaction rate between carbon dioxide and graphite. Steel Research International. 2000;71(8):277—280.
15. Фромм Е., Гебхардт Е. Газы и углерод в металлах. М.: Металлургия, 1980. 712 с.
16. Bryukvin V.A., Zadiranov A.N., Leontyev V.G., Tsybin O.I. Interaction of metallic copper melts with steamair gas mixtures as applied to the tasks of their refining technology from impurities. Tsvetnye metally. 2003;5: 34—36. (In Russ.).
17. Davenport W.G., King M., Schlesinger M., Biswas A.K. Extractive metallurgy of copper. Oxford: Elsever Sciense Ltd., 2002;452.
18. Biswas A.K., Davenport W.G. Extractive metallurgy of copper. Oxford: Pergamon, 1996. 441 p.
19. Gerlach J., Herfort P. The rate of oxyden uptake by molten copper. Journal of Metals. 1968;22(11):1068—1090.
20. Gerlach J., Schneider N., Wuth W. Oxyden absorption during blowing of molten Cu. Journal of Metals. 1972;25(11):1246—1251.
21. Frohne O., Rottmann G. Wuth W. Processing speeds in the pyrometallurgical refining of Cu by the top-blowing process. Journal of Metals. 1973;27(11):1112—1117.
22. Вольхин А.И., Елисеев Е.И., Жуков В.П., Смирнов Б.Н. Анодная и катодная медь. Челябинск: Юж.-Ур. кн. изд-во, 2001. 431 с.
23. Аглицкий В.А. Рафинирование меди. М.: Металлургия, 1971. 184 с.
24. Coursol Р., Valencia C.N., Mackey V.Р., Bell S., Davis B. Minimizationof copper losses in copper smelting slag during electric furnace treatment. Journal of Metals. 2012;64(11):1305—1313. https://doi.org/10.1007/s11837-012-0454-6
25. Namil Um, Seon-Oh Park, Cheol-Woo Yoon, Tae-Wan Jeon. A pretreatment method for effective utilization of copper product manufacturing waste. Environmental Chemical Engineering. 2021;9(4):105—109.
26. Zadiranov A.N., Meshcheryakov A.V., MalkovaM.Yu., Nurmagomedov T.N., Degtyarev S.V., Grigorievskaya I.I., Grusheva T.G., Eroshenko V.O. Ensuring the efficiency of refining copper scrap melt with a steam-air mixture based on mathematical modeling and experimental studies. Metallurgist. 2023;3:101—107. https://doi.org/10.52351/00260827_2023_03_101
Review
For citations:
Kholod S.I., Zhukov V.P., Mamyachenkov S.V., Rogachev V.V. Influence of high-temperature oxidation kinetics of copper on the electrical properties of the melt. Izvestiya. Non-Ferrous Metallurgy. 2025;(3):7-15. https://doi.org/10.17073/0021-3438-2025-3-7-15