Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

New technologies and compositions for recycling non-ferrous metallurgical waste into acid-resistant ceramics without using traditional natural raw materials

https://doi.org/10.17073/0021-3438-2025-2-76-85

Abstract

This study investigates non-ferrous metallurgy waste – specifically, the clay fraction of zircon-ilmenite ore gravity separation tailings (ZIGT) – with the aim of using it as both a clay component and a non-plastic additive (chamotte derived from ZIGT) in the production of acidresistant ceramic tiles. It was found that samples made solely from ZIGT (without any additives), fired at temperatures of 1250–1300 °C, do not meet regulatory requirements for acid resistance. Introducing 40 wt. % chamotte into the ceramic body was found to be optimal for producing acid-resistant tiles at 1300 °C that comply with all requirements of GOST 961-89 Acid-Resistant and Thermo-Acid-Resistant Ceramic Tiles, grade KSh (chamotte-based acid-resistant tiles). Increasing the chamotte content beyond 40 wt.% reduces the clay binder fraction, which in turn lowers the plasticity index (to below 11), causing cracks to form in the samples during shaping. The phase composition of four tile samples with varying ZIGT and chamotte contents was analyzed. X-ray diffraction patterns of the samples fired at 1300 °C revealed prominent peaks corresponding to mullite, cristobalite, quartz, and hematite, which were also confirmed by IR spectroscopy. The formation of mullite is crucial in the production of acid-resistant ceramics, as mullite is the primary phase determining the operational properties of the material. As a result, new ceramic compositions were developed and acid-resistant tiles were obtained from non-ferrous metallurgy waste without the use of conventional natural raw materials.

About the Author

E. S. Abdrakhimova
Samara National Research University named after Academician S.P. Korolev (Samara University)
Russian Federation

Elena S. Abdrakhimova – Cand. Sci. (Eng.), Associate Professor of the Department “Chemistry”

34 Moscow Ave., Samara, 443086



References

1. Koryakov V.E., Shishkina A.A., Shishkina P.A. The influence of metallurgical industry enterprises on the environment and human health. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2019;(4):275—278. (In Russ.).

2. Patel A., Enman J., Gulkova A., Guntoro P.I., Dutkiewicz A., Ghorbani Y., Matsakas L. Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere. 2020;263(12):1—23. http://doi.org/10.1016/j.chemosphere.2020.128306

3. Zhang Y., Xiong Z., Yang L., Ren Z., Shao P., Shi H., Luo X. Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Research. 2019;166 (8):18—24. http://doi.org/10.1016/j.watres.2019.115076

4. Politaeva N.A., Smyatskaya Y.A., Dolbnya I.V., Sobgaida D.S. Microalgae biotechnology multiple use of chlorella sorokiniana. In: Advances in Raw Material Industries for Sustainable Development Goals. (November 27—29, 2020) Saint Petersburg, 2020. Р. 252—261.

5. Abdrakhimov D.V., Abdrakhimova E.S., Abdrakhimov V.Z. The influence of some waste products of nonferrous metallurgy on the physical and mechanical properties of bricks. Izvestiya. Non-Ferrous Metallurgy. 2004; (2):4—9. (In Russ.).

6. Pasmurtseva N.N. Main trends and problems of innovative development of the metallurgical industry of the Russian Federation. Vestnik Tyumenskogo gosudarstvennogo universiteta. Sotsial’no-ekonomicheskie i pravovye issledovaniya. 2018;4:219—231. (In Russ.). http://doi.org/10.21684/2411-7897-2018-4-4-219-231

7. Medvedeva I. V., Amirova E.V., Studentok G.A., Tseitlin E.M., Medvedeva O.M. Environmental impact of mining and metallurgical enterprises in the Sverdlovsk region and ways to reduce it. Izvestiya UGGU. 2023;4(72): 116—126. (In Russ.). http://doi.org/10.21440/2307-2091-2023-4-116-126

8. Kalner V.D. Ecologically oriented habitat — an integral criterion of quality of life. Ekologiya i promyshlennost’ Rossii. 2019;11:50—54. (In Russ.). http://doi.org/10.18412/1816-0395-2019-10-50-55

9. Kryazhev A.M. Gusev T.V., Tikhonova I.O., Ocheretenko D.P., Almgren R. Pulp and paper production: sustainable development and formation of a closed-cycle economy. Ekologiya i promyshlennost’ Rossii. 2020;11: 48—53. (In Russ.). http://doi.org/10.18412/1816-0395-2020-11-48-53

10. Gaprindashvili G.P., Kekeladze M.K. Acid-resistant ceramic materials using industrial waste. Steklo i keramika. 1988;(1):21—23. (In Russ.).

11. Абдрахимова Е.С., Абдрахимов В.З. Физико-химические процессы при обжиге кислотоупоров. СПб.: Недра, 2003. 273 с.

12. Женжурист И.А. Структура, свойства и технологии керамических материалов: С 87 практикум. Казань: Казанский государственный энергетический университет, 2021. 47 с.

13. Абдрахимов В.З., Абдрахимов А.В., Вдовина Е.В., Абдрахимова Е.С. Технология производства керамических изделий. Учебно-методическое пособие для лабораторных работ. Самара: Самарский государственный архитектурно-строительный университет, 2007. 120 с.

14. Ushnitskaya N.N., Mestnikov A.E. Investigation of the properties of clay raw materials by methods of physicochemical analysis. Vestnik Belgorodskogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2024;(4):16—25. http://doi.org/10.17513/use.37919

15. Suleimenov S.T., Ralko A.V., Saibulatov S.Z., Nurbaturov K.A. Moisture conductivity of zologlin mixtures. Stroitel’nye materialy i konstruktsii. 1981;(3):31—35. (In Russ.).

16. Abdrakhimova E.S., Abdrakhimov V.Z. The use of non-ferrous metallurgy waste in the production of acidresistant. Izestiya. Non-Ferrous Metallurgy. 2004;(4): 13—18. (In Russ.).

17. Кингери У.Д. Введение в керамику. М.: Наука, 1964. 529 с.

18. Tursukova I.I., Baymetova M.G. Methodological approach to assessing the effectiveness of a metallurgical enterprise in the context of environmental risks. Ekonomika, predprinimatel’stvo i pravo. 2024;14(2):277—288. (In Russ.).http://doi.org/10.18334/epp.14.2.120551

19. Chen J., Min Fan-fei, Liu Ling-yun, Jia Fei-fei. Adsorption of methylamine cations on kaolinite basal surfaces: A DFT study. Physicochemical Problems of Mineral Processing. 2020; 56(2):338—349. http://doi.org/10.37190/ppmp/117769

20. Августиник А.И. Керамика. Л.: Лениздат, 1975. 591 с.

21. ЧChetverikova A.G., Makarov V.N., Kanygina O.N., Seregin M.M., Stroganova E.A. Correction of the structural formula of kaolinite of the Orenburg region by spectroscopic methods. Kondensirovannye sredy i mezhfaznye granitsy. 2023;25(2):277—291. (In Russ.). https://doi.org/10.17308/kcmf.2023.25/11108

22. Liu Y., Huang Q., Zhao L., Lei S. Influence of kaolinite crystallinity and calcination conditions on the pozzolanic activity of metakaolin. Gospodarka Surowcami Mineralnymi-Mineral Resources Management. 2021:39—56. https://doi.org/10.24425/gsm.2021.136295

23. Abdrakhimova E.S., Abdrakhimov V.Z. Synthesis of mullite from technogenic raw materials. Zhurnal neorganicheskoi khimii. 2007;52(3):395—400. (In Russ.).

24. Biswal B., Mishra D.K., Das S.N., Bhuyan S. Structural, micro-structural, optical and dielectric behavior of mullite ceramics. Ceramics International. 2021;47(22):32252— 32263. https://doi.org/10.1016/j.ceramint.2021.08.120

25. Weiquan Yuan, Jingzhong Kuang, Zheyu Huang, Mingming Yu. Effect of aluminum source on the kinetics and mechanism of mullite preparation from kaolinite. Chemical Physics Letters. 2022;787:139—242. https://doi.org/10.1016/j.cplett.2021.139242

26. Yarotskaya E.G., Fedorov P.P. Mullite and its isomorphic substitutions. Kondensirovannye sredy i mezhfaznye granitsy. 2018;20(4):573—544. (In Russ.). https://doi.org/10.17308/kcmf.2018.20/626

27. Moshnyaga M.A., Grinberg E.E., Pochitalkna I.A. Obtaining high-purity cristobalite using sol-gel -alcoholic technology. Uspekhi khimii i khimicheskoi tekhnologii. 2021;35(6):75—76. (In Russ.).

28. Kotlyar V.D., Terekhina Yu.V. Mineralogical, chemical and structural features of opiate opal-cristobalite rocks as raw materials for the construction industry. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2023;334(1):145—155. (In Russ.). https://doi.org/10.18799/24131830/2023/1/3852

29. Павлов В.Ф., Мещерякова И.В. Роль оксида железа в формировании структуры кислотоупорного фарфора. В сб.: Труды НИИ «Стройкерамика». Научные исследования в области механизации технологических процессов, разработки новых составов масс и глазурей. 1982. С. 48—56.

30. Павлов В.Ф., Мещерякова И.В. Влияние добавки железосодержащих легкоплавких глин на изменение фазового состава и свойств кислотоупоров. В сб.: Труды НИИ «Стройкерамика». Совершенствование технологии в производстве строительной керамики. 1981. С. 109—115.

31. Павлов В.Ф. Влияние состава и строения жидкой фазы керамических масс на формирование структуры изделий из них при обжиге. В сб.: Труды НИИ «Стройкерамика». 1977. № 42. С. 123—154.


Review

For citations:


Abdrakhimova E.S. New technologies and compositions for recycling non-ferrous metallurgical waste into acid-resistant ceramics without using traditional natural raw materials. Izvestiya. Non-Ferrous Metallurgy. 2025;(2):76-85. https://doi.org/10.17073/0021-3438-2025-2-76-85

Views: 15


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)