Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and properties of C92900 antifriction bronze produced by upward continuous casting

https://doi.org/10.17073/0021-3438-2025-2-66-75

Abstract

Antifriction tin bronzes are used in the aerospace industry to manufacture components that operate in friction assemblies at elevated temperatures. This is due to the alloy’s favorable combination of antifriction, mechanical, and corrosion properties. In particular, tin bronze C92900 (alloy Cu–10Sn–3Ni–2Pb (wt. %)) is widely used in such applications. It is employed in the production of braking system components and plunger pump parts. Currently, these parts are manufactured by machining ingots produced through casting with directional solidification. However, this method has a low material utilization rate, typically between 5 % and 15 %. The most promising method for producing C92900 ingots is upward continuous casting technology, which allows the ingot dimensions to closely match those of the finished part. This significantly reduces machining effort and increases metal utilization to 95 %. This study presents the results of process development for the upward continuous casting technology of 15 mm diameter C92900 ingots. The structure and properties of the castings were also investigated. It was shown that as the casting speed increased from 90 to 360 mm/min, the volume fraction of the γ-Cu3Sn intermetallic phase increased, while the amount of tin-based solid solution remained nearly unchanged. At the same time, the phase distribution became more refined. The macrostructure consisted of columnar and equiaxed grains. As the casting speed increased, the columnar grains became more tilted relative to the direction of heat removal. The hardness increased from 127 ± 2.73 to 136 ± 4.25 HB, and the tensile strength and elongation slightly increased up to 250 mm/min, then decreased at 360 mm/min, which was associated with the macrostructure approaching a transcrystalline form. The study also examined shrinkage cavities and segregation defects in ingots cast at 150 mm/min and analyzed their causes. Finally, the paper provides recommendations for optimal casting parameters for 15 mm diameter ingots produced by upward continuous casting technology

About the Authors

L. D. Miteva
National University of Science and Technology «MISIS»
Russian Federation

Ludmila D. Miteva – Postgraduate Student, Department of Foundry Technologies and Material Art Working (FT&MAW)

1 Bld, 4 Leninskiy Prosp., Moscow 119049



A. Yu. Titov
National University of Science and Technology «MISIS»
Russian Federation

Andrey Yu. Titov – Cand. Sci. (Eng.), Assistant Professor, Department of FT&MAW

1 Bld, 4 Leninskiy Prosp., Moscow 119049



I. I. Baranov
National University of Science and Technology «MISIS»
Russian Federation

Ivan I. Baranov – Postgraduate Student, Department of FT&MAW

1 Bld, 4 Leninskiy Prosp., Moscow 119049



T. A. Bazlova
National University of Science and Technology «MISIS»
Russian Federation

Tatiana A. Bazlova – Cand. Sci. (Eng.), Docent, Associate Professor, Department of FT&MAW

1 Bld, 4 Leninskiy Prosp., Moscow 119049



A. A. Nikitina
National University of Science and Technology «MISIS»
Russian Federation

Anna A. Nikitina – Laboratory Assistant, Department of FT&MAW

1 Bld, 4 Leninskiy Prosp., Moscow 119049



V. D. Belov
National University of Science and Technology «MISIS»
Russian Federation

Vladimir D. Belov – Dr. Sci. (Eng.), Prof., Head of the Department of FT&MAW

1 Bld, 4 Leninskiy Prosp., Moscow 119049



References

1. Gruzdeva I.A., Sulitsyn A.V., Mysik R.K., Sokunov B.A. Effect of electromagnetic mixing on tin bronze structure and properties. Liteishik Rossii. 2006;(11):27—29. (In Russ.).

2. Song K., Zhou Y., Zhao P., Zhang Y., Bai N. Cu—10Sn—4Ni—3Pb alloy prepared by crystallization under pressure: An experimental study. Acta Metallurgica Sinica (English Letters). 2013;26(2):199—205. https://doi.org/10.1007/s40195-012-0118-0

3. Gerasimenko E.A., Konovalov A.N., Belov V.D. On solidification of ingots from bronze C92900 when casting in bottom water-cooled casters. Liteishchik Rossii. 2013;(7):15-17.

4. Ozerdem M.S., Kolukisa S. Artificial neural network approach to predict the mechanical properties of Cu—Sn—Pb—Zn—Ni cast alloys. Materials & Design. 2009;30(3):764—769. https://doi.org/10.1016/j.matdes.2008.05.019

5. Belov V.D., Gerasimenko E.A., Guseva V.V., Konovalov A.N. Effect of solidification conditions for castings of BrO10S2N3 tin bronze on their structure. Izvestiya. NonFerrous Metallurgy. 2016;(2):26—33. (In Russ.). https://doi.org/10.17073/0021-3438-2016-2-26-33

6. Ежов Ю.А., Железняк Л.М. Улучшение качества непрерывнолитых слитков сложнолегированных латуней и бронз. В сб: Сборник трудов XVII Международной научно-технической Уральской школы-семинара металловедов — молодых ученых (5—9 декабря 2016 г.). Екатеринбург: Изд-во УрФУ, 2016. Ч. 1. С. 19—23.

7. Bazhenov V.E., Titov A.Yu., Shkalei I.V., Marukovich E.I., Plisetskaya I.V., Mezrin А.M., Koltygin A.V., Belov V.D., Yudin V.A. Investigation of effect of casting speed on structure and properties of bronze rods C92900 obtained by continuous casting upwards. Metallurgist. 2021;65(7-8):735—745. https://doi.org/10.52351/00260827_2021_07_44

8. Tavolzhanskiy S.A., Pashkov I.N. Features of the continuous casting of small-section billets from copperbased alloys. Metallurgist. 2021;64(9-10):1068—1076. https://doi.org/10.1007/s11015-021-01088-y

9. Tavolzhanskiy S.A., Pashkov I.N., Koletvinov K.F. Features of continuous casting of small-section billets from copper-based alloys. Liteyshik Rossii. 2020;(12):18— 23. (In Russ.).

10. Yakubovich E.A. Peculiarities of two-phase ingot zone formation at continuous casting. Sovremennye materialy, tehnika i tehnologii. 2016;3(4):144—148. (In Russ.).

11. Gupta R., Srivastava S., Kumar N.K., Panthi S.K. High leaded tin bronze processing during multi-directional forging: Effect on microstructure and mechanical properties. Materials Science and Engineering: A. 2016;654:282—291. https://doi.org/10.1016/j.msea.2015.12.068

12. Potekhin B.A., Ilyushin V.V., Khristolyubov A.S., Zhilyakov A.Yu. Formation of structure and properties of composite bronzes reinforced by steel dendrites. The Physics of Metals and Metallography. 2014;115(4): 413—419. https://doi.org/10.1134/S0031918X14010128

13. Ludwig A., Gruber-Pretzler M., Wu M., Kuhn A., Riedle J. About the formation of macrosegregations during continuous casting of Sn-bronze. Fluid Dynamics & Materials Processing. 2005;1(4):285—300. https://doi.org/10.3970/fdmp.2005.001.285

14. Kreil A., Vosskühler H., Walter K. The continuous casting of copper and its alloys. Metallurgical Reviews. 1960;5(1):413—446. https://doi.org/10.1179/mtlr.1960.5.1.413

15. Korchmit A.V., Martyushev N.V., Drozdov Yu.Yu. The influence of the pouring temperature on the structure andproperties of copper metal alloys. Key Engineering Materials. 2016;685:450—454. https://doi.org/10.4028/www.scientific.net/KEM.685.450

16. Мальцева Л.А., Гриб С.В., Столбовский А.В. Ликвация в сплавах. Екатеринбург: УГТУ—УПИ, 2006. 21 с.

17. Scott D.A., Schwab R. Metallography in archaeology and art. The Structure of Metals and Alloys. 2019:69—261. https://doi.org/10.1007/978-3-030-11265-3

18. Mysik R.K., Sulicin A.V., Brusnicyn S.V., Ozhgihin I.V. Problems of production of copper castings. Zhurnal Sibirskogo federalnogo universiteta. Seriya: Tehnika i tehnologii. 2014;7(4):394—399. (In Russ.).

19. Kim Y.-Y., Kim H.-S. Prediction of grain structure of thin bronze slab produced by horizontal continuous casting. Metals and Materials International. 2019;25:465—472. https://doi.org/10.1007/s12540-018-00231-w

20. Bazhenov V.E., Titov A.Yu., Shkalei I.V., Sannikov A.V., Tavolzhanskii S.A., Mezrin A.M., Koltygin A.V., Nikitina A.A., Plisetskaya I.V., Belov V.D., Yudin V.A. Investigation of C92900 bronze properties obtained by permanent mold casting, continuous upcasting and hot extrusion. Izvestiya. Non-Ferrous Metallurgy. 2021;(3):24—36. (In Russ.). https://doi.org/10.17073/0021-3438-2021-3-24-36

21. Sergejevs A., Kromanis А., Ozolins Ya., Gerins E. Influence of casting velocity on mechanical properties and macro-structure of tin bronzes. Key Engineering Materials. 2016;674:81—87. http://doi.org/10.4028/www.scientific.net/KEM.674.81

22. Koletvinov K.F., Tavolzhanskij S.A., Pashkov I.N. Obtaining copper-based high-temperature solder blanks by continuous up-casting method. Liteyshik Rossii. 2015;(11):29—31. (In Russ.).


Review

For citations:


Miteva L.D., Titov A.Yu., Baranov I.I., Bazlova T.A., Nikitina A.A., Belov V.D. Structure and properties of C92900 antifriction bronze produced by upward continuous casting. Izvestiya. Non-Ferrous Metallurgy. 2025;(2):66-75. https://doi.org/10.17073/0021-3438-2025-2-66-75

Views: 21


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)