Selective sorption-based separation of palladium from process solutions using chemically modified silica
https://doi.org/10.17073/0021-3438-2025-2-41-54
Abstract
This study focuses on investigating the possibility of selective separation of palladium (II) from solutions containing non-ferrous metals and iron by sorption onto chemically modified silica. The study used both individual (single-metal) and model multicomponent solutions. The sorbents included silicas functionalized with iminodiacetic acid (IDA-D), phosphonic acid (PA-D), and aminomethylphosphonic acid (AMPA-D) groups, as well as a well-known chemically modified silica bearing grafted γ-aminopropyltriethoxysilane (APTES) groups at a grafting density of 1.63 mmol/g. Under static conditions at room temperature, the time required to reach equilibrium sorption values for Cu(II), Ni(II), and Fe(III) ions – typically present in process solutions – was determined for the IDA-D, PA-D, and AMPA-D sorbents. Sorption dependencies on hydrochloric acid concentration were established for these metal ions. For IDA-D, the effect of halide ion concentration on sorption was also studied. It was shown that these ions are sorbed in weakly acidic media but not in 1–2 M HCl, and that sorption capacity decreases in the order: IDA-D > AMPA-D > PA-D. However, the conclusion that quantitative separation of Pd(II) from base metal ions could be achieved using these complexing sorbents (exemplified by IDA-D) under dynamic conditions was not confirmed. The sorption behavior of Pd(II), Cu(II), and Al(III) ions was also examined under static and dynamic conditions using the APTES-functionalized silica and chloride and chloride-bromide solutions, including model solutions simulating leach liquors generated from the treatment of spent catalysts for low-temperature carbon monoxide oxidation. These solutions contained 0.004–0.015 mol/L Pd, 0.014–0.049 mol/L Cu, and 0.015–0.060 mol/L Al. The results demonstrated the feasibility of selectively separating Pd(II) from leach solutions of spent catalysts using this sorbent. A processing scheme was proposed, comprising sorption from 0.1 M HCl, water rinsing of the loaded sorbent, and elution of Pd(II) with a 5 % thiourea solution in 0.1 M HCl. It was shown that separation of palladium from non-ferrous metals occurs already at the sorption and washing stages.
About the Authors
T. M. BuslaevaRussian Federation
Tat’yana M. Buslaeva – Dr. Sci. (Chem.), Professor of the Departments of Chemistry and Technology of Rare Elements
86 Vernadskogo Prosp., Moscow 119571
E. V. Volchkova
Russian Federation
Elena V. Volchkova – Cand. Sci. (Chem.), Associate Professor of the Departments of Chemistry and Technology of Rare Elements
86 Vernadskogo Prosp., Moscow 119571
P. G. Mingalev
Russian Federation
Pavel G. Mingalev – Cand. Sci. (Chem.), Leading Researcher of the Department of Сhemistry of Рetroleum and Оrganic Сatalysis
Bld, 3 Leninskie Gory, Moscow 119991
I. V. Boryagina
Russian Federation
Irina V. Boryagina – Deputy Head of the Testing laboratory
Bld, 22/24 Ozerkovskaya nab., Moscow 115184
References
1. PGM Market Report, May 2024. London: Johnson Matthey, 2024. P. 48. https://matthey.com/documents/161599/509428/PGM-Market-Report-24.pdf/4d557d3b-47d1-d975-c4af-5df1c81000f0?t=1715228936090
2. Чоркендорф И., Наймантсведрайт Х. Современный катализ и химическая кинетика. Долгопрудный: ИД «Интеллект», 2010. 599 с.
3. Valishina E.A., Guedes da Silva M.F.C., Kinzhalov M.A., Timofeeva S.A., Buslaeva T.M., Haukka M., Pombeiro A.J.L., Boyarskiy V.P, Kukushkin V.Yu., Luzyanin K.V. Palladium — ADC complexes as effective catalysts in copperfree and room temperature Sonogashira coupling. Journal of Molecular Catalysis A: Chemical. 2014;395:162—171. https://doi.org/10.1016/j.molcata.2014.08.018
4. Goulas K.A., Sreekumar S., Song Y., Kharidehal P., Gunbas G., Dietrich P.J., Johnson G.R., Wang Y.C., Grippo A.M., Grabow L.C., Gokhale A.A., Toste F.D. Synergistic effects in bimetallic palladium—copper catalysts improve selectivity in oxygenate coupling reactions. Journal of the American Chemical Society. 2016;138(21): 6805—6812. https://doi.org/10.1021/jacs.6b02247
5. Yang H., Qin S., Yue Y., Liu L., Wang H., Lu J. Entrapment of a pyridine derivative within a copper—palladium alloy: a bifunctional catalyst for electrochemical reduction of CO2 to alcohols with excellent selectivity and reusability. Catalysis Science and Technology. 2016;6: 6490—6494. https://doi.org/10.1039/C6CY00971A
6. Kanwal I., Mujahid A., Rasool N., Rizwan K., Malik A., Ahmad G., Shah S.A.A., Rashid U., Nasir N.M. Palladium and copper catalyzed Sonogashira cross coupling an excellent methodology for C—C bond formation over 17 years: A review. Catalysts. 2020;10(4):443. https://doi.org/10.3390/catal10040443
7. Obradović M.D., Lačnjevac U.Č., Radmilović V.V., Gavrilović-Wohlmuther A., Kovač J., Rogan J.R., Radmilović V.R., Gojković S.Lj. Palladium-copper bimetallic surfaces as electrocatalysts for the ethanol oxidation in an alkaline medium. Available at SSRN 4455250.2023. https://dx.doi.org/10.2139/ssrn.4455250
8. Lesiak M., Binczarski M., Karski S., Maniukiewicz W., Rogowski J., Szubiakiewicz E., Berlowska J., Dziugan P., Witońska I. Hydrogenation of furfural over Pd—Cu/ Al2O3 catalysts. The role interaction between palladium and copper on determining catalytic properties. Journal of Molecular Catalysis A: Chemical. 2014;395:337—348. https://doi.org/10.1016/j.molcata.2014.08.41
9. Bruk L., Titov D., Ustyugov A., Zubavichus Ya., Chernikova V., Tkachenko O., Kustov L., Murzin V., Oshanina I., Temkin O. The mechanism of low-temperature oxidation of carbon monoxide by oxygen over the PdCl2—CuCl2/γ-Al2O3 nanocatalyst. Nanomaterials. 2018;8(4):217. https://doi.org/10.3390/nano8040217
10. Bruk L. G., Ustyugov A. V., Katsman E. A., Iskhakova L.D., Oshanina I.V., Tkachenko O.P., Kustov L.M., Temkin O.N. Kinetics and mechanism of the low-temperature oxidation of carbon monoxide with oxygen on a PdCl2—CuCl2/γ-Al2O3 catalyst. Kinetics and Catalysis. 2017;58 (2):179—190. https://doi.org/10.1134/S0023158417020033
11. Feng Ya., Wang Li, Zhang Ya., Guo Yu. Deactivation mechanism of PdCl2—CuCl2/Al2O3 catalysts for CO oxidation at low temperatures. Chinese Journal of Catalysis. 2013;34(5):923—931. https://doi.org/10.1016/S1872-2067(12)60556-7
12. Giovanna N., Goosey E., Yildiz D.S., Loving E., Nguyen V.T., Riaño S., Yakoumis I., Martinez A.M., Siriwardana A., Unzurrunzaga A., Spooren J., Atia T.A., Michielsen B., Dominguez-Benetton X., Lanaridi O. Platinum group metals recovery using secondary raw materials (PLATIRUS): Project overview with a focus on processing spent autocatalyst. Johnson Matthey Technology Review. 2021;65(1)127—147. https://doi.org/10.1595/205651321X16057842276133
13. Ehrliсh G.V., Buslaeva T.M., Maryutina T.A. Trends in sorption recovery of platinum metals: A critical survey. Russian Journal of Inorganic Chemistry. 2017;62(14): 1797—1818. https://doi.org/10.1134/S0036023617140030
14. Lisichkin G.V., Olenin A.Y. Chemically modified silica in sorption-instrumental analytical methods. Russian Journal of General Chemistry. 2021;91(5):870—889. https://doi.org/10.1134/S1070363221050182
15. Radi Smaail, El-Abiad Chahrazad, Moura Nuno M.M., Faustino Maria A.F., Neves M. Graça P.M.S. New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: synthesis, characterization, isotherms, kinetics and thermodynamics studies. Journal of Hazardous Materials. 2019;370:80—90. https://doi.org/10.1016/j.jhazmat.2017.10.058
16. Giannakoudakis D.A., Anastopoulos I., Barczak M., Αntoniou E., Terpiłowski K., Mohammadi E., Shams M., Coy E., Bakandritsos A., Katsoyiannis I.A., Colmenares J.C., Pashalidis I. Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the most. Journal of Hazardous Materials. 2021;413:125279. https://doi.org/10.1016/j.jhazmat.2021.125279
17. Abdelrahman E.A., Khalil M.M.H., Khairy M., ElReash Ya.G.A., Gad H.M., Katouah H.A., Saad F.A., Rayes S.M.E., Rehman Kh.U. Modification of hydroxysodalite nanoparticles by (3-aminopropyl)trimethoxysilane and isatoic anhydride as a novel composite for efficient sorption of Cu(II) ions from aqueous media. Silicon. 2024;16:1083—1096. https://doi.org/10.1007/s12633-023-02743-6
18. Losev V.N., Volkova G.V., Maznyak N.V., Trofimchuk A.K., Yanovskaya E. Ya. Sorption of palladium by silica chemically modified with N-allyl-N’-propyltylthiourea, followed by spectrometric determination. Zhurnal analiticheskoi khimii. 1999;54(12):1254—1258. (In Russ.).
19. Losev V.N., Kudrina U.V., Trofimchuk A.K. Features of the interaction of chloride and tin chloride complexes of rhodium and iridium with N-(2,6-dimethyl-4methylenetriphenylphosphonium chloride)—N’-propylthiourea groups covalently attached to the silica surface. Zhurnal neorganicheskoi khimii. 2005;50(6): 961—966. (In Russ.).
20. Boryagina I.V., Volchkova E.V., Buslaeva T.M., Vasileva M.V., Erlich G.V. Sorption of chloride complexes of palladium and platinum by chemically modified silicas. Tsvetnye metally. 2012;(5):59—64. (In Russ.).
21. Волчкова Е.В., Борягина И.В., Мищихина Е.А., Буслаева Т.М., Эрлих Г.В., Лисичкин Г.А. Способ извлечения палладия (II) из отработанных катализаторов: Патент 2442833 (РФ). 2010.
22. Брауэр Г. Руководство по неорганическому синтезу. Т. 5. М.: Мир, 1985. 360 с.
23. Buslaeva T.M., Volchkova E.V., Boryagina I.V. Аpplication of nitrogen- and sulfur-containing chemically modified silica for the selective sorption of Рalladium. Tsvetnye metally. 2024;(1):24—32. (In Russ.). https://doi.org/10.17580/tsm.2024.01.03
24. Bruening R.L., Tarbet B.J., Krakowiak K.E., Bradshaw J.S., Izatt R.M. Support bonded polyalkylenepolyamine-poly(carboxylic acid) and extraction of metal ions therewith: Application WO9217403. (USA) 1992.
25. Bruening R.L., Tarbet B.J., Bradshaw J.S., Izatt R.M., Krakowiak K.E. Aminoalkylphosphonic acid containing ligands attached to solid supports for removal of metal ions: Patent 5182251 (USA). 1993.
26. Rosenberg E., Pang D.C. System for extracting soluble heavy metals from liquid solitions: Patent 5695882 (USA). 1997.
27. Fischer R.J., Pang D., Beatty S.T., Rosenberg E. Silica—polyamine composite materials for heavy metal ion removal, recovery, and recycling. II. Metal ion separations from mine wastewater and soft metal ion extraction efficiency. Separation Science and Technology. 1999;34(16):3125—3137. https://doi.org/10.1081/ss-100100826
28. Hughes M.A., Wood J., Rosenberg E. Polymer structure and metal ion selectivity in silica polyamine composites modified with sodium chloroacetate and nitriloacetic acid (NTA) anhydride. Industrial & Engineering Chemistry Research. 2008;47(17):6765—6774. https://doi.org/10.1021/ie800359k
29. Mingalev P.G., Lisichkin G.V. Chemical modification of oxide materials with organic acids of phosphorus (V) and their esters. Uspekhi khimii. 2006;75(6):604—624. (In Russ.). https://doi.org/10.1070/RC2006v075n06ABEH002478
30. Ehrlich G.V., Lisichkin G.V. Sorption in the chemistry of rare earth elements. Russian Journal of General Chemistry. 2017;87(6):1220—1245. https://doi.org/10.1134/S1070363217060196
31. Тihomirova T.I., Nesterenko P.N. Features of complexation reactions on the surface of modified silica sorbents: sorption and complexation chromatography of metals. Koordinatsionnaya khimiya. 2022;48(10): 615—624. (In Russ.). https://doi.org/10.31857/S0132344Х22100085
32. Biryukov A.A., Shelenskaya V.I., Alimarin I.I. Mixed halide and thiocyanate complex compounds of palladium (II) in aqueous solutions. Izvestiya Akademii nauk SSSR. Ser. Khimicheskaya, neorganicheskaya i analiticheskaya khimiya. 1966;(1):3—8. (In Russ.).
33. Buslaeva T. M., Simanova S.A. The state of platinum metals in hydrochloric acid and chloride aqueous solutions. Palladium, platinum, rhodium, iridium. Koordinatsionnaya khimiya. 1999;25(3):165—176. (In Russ.).
34. Gmelin L., Griffith W. P. Gmelin handbook of inorganic chemistry. Palladium. Berlin, Heidelberg, New York, London, Paris: Springer-Verlag, 1989. 354 р.
35. Kovalchukova O.V. Features of structure, geometrical, and spectral characteristics of the (HL)2[CuX4] and (HL)2[Cu2X6] (X — Cl, Br) complexes. In book: Current trends in X-Ray Crystallography. 2011:450. https://doi.org/10.5772/27969
36. Ivanov V.M., Gorbunova G.N., Kudryavtsev G.V., Lisichkin G.V., Shurupova T.I. Sorption of palladium, iridium and platinum by chemically modified silicas. Zhurnal analiticheskoi khimii. 1984;39(11):504—509. (In Russ.).
37. Tikhomirova T.I., Fadeeva V.I., Kudryavtsev G.V., Nesterenko P.N., Ivanov V.M., Savitchev A.T., Smirnovaу N.S. Sorption of noble-metal ions on silica with chemically bonded nitrogen-containing ligands. Talanta. 1991;38(3):267—274. https://doi.org/10.1016/0039-9140(91)80046-3
38. Onizhuk M., Ivanov V., Kholin Y., Panteleimonov A. Quantum chemical evaluation of dissociation constants. Test calculations. National University Bulletin. Chemical Series. 2016;26(49):65—72. https://doi.org/10.26565/2220-637X-2016-26-07
39. Branzoi V., Golgovici F., Brânzoi F. Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Materials Chemistry and Physics. 2003;78(1):122—131. https://doi.org/10.1016/S0254-0584(02)00222-5
40. Abd El Aal Emad El Din, Wanees S., Farouk A., Abd El Haleem S. Factors affecting the corrosion behaviour of aluminium in acid solutions. II. Inorganic additives as corrosion inhibitors for Al in HCl solutions. Corrosion Science. 2013;68:14—24. https://doi.org/10.1016/j.corsci.2012.09.038
41. Нефедов В.И. Рентгеноэлектронная спектроскопия неорганических соединений: Справочник. М.: Химия, 1984. 255 с.
42. Buslaeva T.M., Buslaev A.V., Kopylova E.V. Sorption of iridium chlorocomplexes with chemically modified silica. Izvestiya. Non-Ferrous Metallurgy. 2000;(3):59—62. (In Russ.).
Review
For citations:
Buslaeva T.M., Volchkova E.V., Mingalev P.G., Boryagina I.V. Selective sorption-based separation of palladium from process solutions using chemically modified silica. Izvestiya. Non-Ferrous Metallurgy. 2025;(2):41-54. https://doi.org/10.17073/0021-3438-2025-2-41-54