Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Spectroscopic study of MA-41P and MK-40 membranes in electromembrane purification of process solutions containing cobalt, copper, and cadmium ions

https://doi.org/10.17073/0021-3438-2025-2-19-29

Abstract

Infrared (IR) spectra were obtained for the surface layer of heterogeneous membranes — cation-exchange MK-40 and anionexchange MA-41P — widely used in electromembrane processes. Spectra were recorded for air-dry, statically water-saturated, and operational (dynamically water-saturated) membrane samples. Dynamic water saturation was achieved during the electrodeionization purification of a solution containing cobalt, copper, and cadmium ions. Water saturation was found to increase the intensity and bandwidth of the absorption band at ν = 3000÷3700 cm–1, corresponding to the OH stretching vibration region. The appearance of an additional peak at ν ≈ 3287 cm–1 was attributed to the formation of stronger hydrogen bonds in the membrane pore space. The absence of shifts in the absorption bands corresponding to the membrane matrix components under air-dry, statically, and dynamically saturated conditions indicates their chemical stability. In the MA-41P membrane, after use in electrodeionization, changes were observed in both the intensity and position of absorption peaks in the ν  1220÷1000 cm–1 region, associated with the functional groups of the anion exchanger. The observed spectral changes were evaluated by calculating the normalized peak intensities of the absorption bands. It was shown that in the dynamically water-saturated state, both MK-40 and MA-41P membranes exhibit a reduction in the amount of weakly bound (“free”) water and the formation of stronger hydrogen bonds. The results of optical density calculations for characteristic polyethylene absorption bands — the main component of the membrane matrix — are presented. Changes in optical density upon water saturation indicate conformational rearrangements of polyethylene macromolecules. The amounts of chemically unbound solute components retained within the membrane volume were quantified; these species do not affect the membranes’ chemical stabiliy or operational performance.

About the Authors

O. V. Dolgova
Tambov State Technical University (TSTU)
Russian Federation

Olga V. Dolgova – Cand. Sci. (Eng.), Senior Lecturer of the Department «Nature Management and Environmental Protection»

106 Sovetskaya Str., Tambov 392000



S. I. Lazarev
Tambov State Technical University (TSTU)
Russian Federation

Sergey I. Lazarev – Dr. Sci. (Eng.), Professor, Head of the Department «Mechanics and Engineering Graphics»

106 Sovetskaya Str., Tambov 392000



M. I. Mikhaylin
Tambov State Technical University (TSTU)
Russian Federation

Maxim I. Mikhaylin – Postgraduate of the Department «Mechanics and Engineering Graphics»

106 Sovetskaya Str., Tambov 392000



References

1. Shaoxiang Leeabc, Wenqiao Mengabc, Yupeng Wangd, Dong Wang, Meng Zhang, Guohui Wang, Jiaji Cheng, Yue Zhou, Wenjuan Qu. Comparison of the property of homogeneous and heterogeneous ion exchange membranes during electrodialysis process. Ain Shams Engineering Journal. 2021;12(1):159—166. https://doi.org/10.1016/j.asej.2020.07.018

2. Jaime-Ferrer J.S., Mosqueda-Quintero M., Suárez-Toriello V.A., Anderson S.M., González Vargas O.A., Villafaña-López L. Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis. International Journal of Chemical Reactor Engineering. 2020;18(7):20200020. https://doi.org/10.1515/ijcre-2020-0020

3. Zhao X., Liu L., Zhang X., Cheng X., Sun J., Pan J. Preparation of high-performance semihomogeneous cation exchange membranes for electrodialysis via solvent-free polyethylene particle-confined monomer polymerization. Industrial & Engineering Chemistry Research. 2023;62(14):5945—5953. https://doi.org/10.1021/acs.iecr.2c04475

4. Kikhavani T., Ashrafizadeh S.N., Van der Bruggen B. Identification of optimum synthesis conditions for a novel anion exchange membrane by response surface methodology. Journal Applied Polymer Science. 2014;133(3):39888. https://doi.org/10.1002/app.39888

5. Xu T. Ion exchange membranes: state of their development and perspective Journal of Membrane Science. 2005; 263(1-2):1—29. https://doi.org/10.1016/j.memsci.2005.05.002

6. Butyl’skiy D.Yu., Troickiy V.A., Skudarnova A.S., Sharafan M.V. Sedimentation on the surface of the anion exchange membrane MA-41P in the concentration chamber of the electrodialyzer during the processing of dilute imitates of reservoir waters. Membrany i membrannye tekhnologii. 2022;12(5):384—395. (In Russ.). https://doi.org/10.31857/S2218117222050030

7. Pis’menskaya N.D., Mareeva S.A., Pohidnya E.V., Larshe K., Dammak L., Nikonenko V.V. The effect of surface modification of a heterogeneous anion exchange membrane on the intensity of electroconvection at its surface. Elektrohimiya. 2019;55(12):1471—1489. (In Russ.). https://doi.org/10.1134/S0424857019120132

8. Niftaliev S.I., Kozaderova O.A., Vlasov YU.N., Kim K.B., Matchina K.S. Structural and kinetic parameters of MK-40 and MA-41 ion exchange membranes in ammonium nitrate solutions. Sorbcionnye i hromatograficheskie processy. 2015;15(5):708—713. (In Russ.). https://doi.org/10.17308/sorpchrom.2015.15/324

9. Saud A.M., Vasil’eva V.I., Goleva E.A., Akberova E.M., Kozlov A.T. The choice of an anion exchange membrane during the separation of phenylalanine and sodium chloride by neutralization dialysis. Sorbcionnye i khromatograficheskie processy. 2020;20(6):749—759. (In Russ.). https://doi.org/10.17308/sorpchrom.2020.20/3143

10. Dammak L., Fouilloux J., Bdiri M., Larchet C., Renard E., Baklouti L., Pismenskaya N. A review on ion-exchange membrane fouling during the electrodialysis process in the food industry. Part 1: Types, effects, characterization methods, fouling mechanisms and interactions. Separation and Purification Technology. 2021;199:114— 123. https://doi.org/10.3390/membranes11100789

11. Bdiri M., Perreault V., Mikhaylin S., Larchet C., Hellal F., Bazinet L., Dammak L. Identification of phenolic compounds and their fouling mechanisms in ionexchange membranes used at an industrial scale for wine tartaric stabilization by electrodialysis. Separation and Purification Technology. 2020;233:115995. https://doi.org/10.1016/j.seppur.2019.115995

12. Bdiri M., Dammak L., Larchet C., Hellal F., Porozhnyy M., Nevakshenova E., Nikonenko V. Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes. Separation and Purification Technology. 2019;210:636—650. https://doi.org/10.1016/j.seppur.2018.08.044

13. Barros K.S., Martí-Calatayud M.C., Pérez-Herranz V., Espinosa D.C.R. A three-stage chemical cleaning of ion-exchange membranes used in the treatment by electrodialysis of wastewaters generated in brass electroplating industries. Desalination. 2020;492:114628. https://doi.org/10.1016/j.desal.2020.114628

14. Villafaña-López L., Reyes-Valadez D.M., González-Vargas O.A., Suárez-Toriello V.A., Jaime-Ferrer J.S. Custom-made ion exchange membranes at laboratory scale for reverse electrodialysis. Membranes. 2019;9(11):145. https://doi.org/10.3390/membranes9110145

15. Cseri L., Baugh J., Alabi A., AlHajaj A., Zou L., Dryfe R.A., Szekely G. Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis. Journal of Materials Chemistry A. 2018;6(48)^24728—24739. https://doi.org/10.1039/C8TA09160A

16. Hosseini S.M., Sohrabnejad S., Nabiyouni G., Jashni E., Van der Bruggen B., Ahmadi A. Magnetic cation exchange membrane incorporated with cobalt ferrite nanoparticles for chromium ions removal via electrodialysis. Journal of Membrane Science. 2019;583:292—300. https://doi.org/10.1016/j.memsci.2019.04.069

17. Bonizzoni S., Stucchi D., Caielli T., Sediva E., Mauri M., Mustarelli P. Morpholinium-modified, polyketone-based anion exchange membranes for water electrolysis. ChemElectroChem. 2023;10(6):202201077. https://doi.org/10.1002/celc.202201077

18. Xu X., Lin L., Ma G., Wang H., Jiang W., He Q., Xu P. Study of polyethyleneimine coating on membrane permselectivity and desalination performance during pilot-scale electrodialysis of reverse osmosis concentrate. Separation and Purification Technology. 2018;207:396—405. https://doi.org/10.1016/j.seppur.2018.06.070

19. Konovalov D.N., Horohorina I.V., Lazarev S.I., Nagornov S.A., Kornev A.Yu., Kotenev S.I. Spectroscopic and kinetic studies of the permeability of the surface layers of membranes in the process of microfiltration separation of aqueous organic solutions. Poverhnost’. Rentgenovskie, sinhrotronnye i nejtronnye issledovaniya. 2023;3:98—104. (In Russ.). https://doi.org/10.31857/S1028096023030056

20. Лазарев С.И., Головин Ю.М., Коновалов Д.Н., Яновская Э.Ю., Родионов Д.А. ИК-спектроскопические исследования адсорбированной воды и изменения структуры в гидрофобных и гидрофильных микрофильтрационных мембранах. Физикохимия поверхности и защита материалов. 2023;59(2):155—160. https://doi.org/10.31857/S0044185623700183 Lazarev S.I., Golovin Yu.M., Konovalov D.N., Yanovskaya E.Yu., Rodionov D.A. IR spectroscopic studies of adsorbed water and structural changes in hydrophobic and hydrophilic microfiltration membranes. Fizikohimiya poverhnosti i zashchita materialov. 2023;59(2):155—160. (In Russ.). https://doi.org/10.31857/S0044185623700183

21. Smith B. The infrared spectra of polymers II: Polyethylene. Spectroscopy. 2021;36(9):24—29. https://doi.org/10.56530/spectroscopy.xp7081p7

22. Wen Y., Liang M., Wang Y., Ren W., Lü X. Perfectly green organocatalysis: quaternary ammonium base triggered cyanosilylation of aldehydes. Chinese Journal of Chemistry. 2012;30(9):2109—2114. https://doi.org/10.1002/cjoc.201200598

23. Tubergen M.J., Kuczkowski R.L. Microwave spectroscopic characterization of a strong hydrogen bond: trimethylamine-water. Journal of the American Chemical Society. 1993;115(20):9263—9266. https://doi.org/10.1021/ja00073a048

24. Lazarev S.I., Golovin Yu.M., Horohorina I.V., Hohlov P.A. Investigation of the structural organization of the surface layer and the state of water in ultrafiltration composite membranes. Fizikohimiya poverhnosti i zashchita materialov. 2020;56(2):132—137. (In Russ.). https://doi.org/10.31857/S0044185620020151

25. Sinitsa L.N., Emel’yanov N.M., Lugovskoy A.A., Shcherbakov A.P., Annenkov V.V. Determination of the pore size of silicon materials from the IR spectra of adsorbed water. Optika atmosfery i okeana. 2021;34(07):483—487. (In Russ.). https://doi.org/10.15372/AOO20210701

26. Дехант И., Данц Р., Киммер В. Инфракрасная спектроскопия полимеров. М.: Химия, 1976. 473с.

27. Konovalov D.N., Lazarev S.I., Lua P., Polyansky K.K. Studies of kinetic and sorption characteristics of OPAM-K and OPMN-P membranes in the process of electronanofiltration separation of an aqueous solution of potassium sulfate. Vestnik VGUIT. 2023;1(85):24—32. (In Russ.). https://doi.org/10.20914/2310-1202-2023-1-24-32

28. Sarapulova V.V., Klevtsova A.V., Pishevskaya N.D. Electrostatic interactions of ion-exchange materials with anthocyanins in the processes of their sorption and electrodialysis extraction from liquid media. Membrany i membrannye tekhnologii. 2020;4(10):281—292. (In Russ.).


Review

For citations:


Dolgova O.V., Lazarev S.I., Mikhaylin M.I. Spectroscopic study of MA-41P and MK-40 membranes in electromembrane purification of process solutions containing cobalt, copper, and cadmium ions. Izvestiya. Non-Ferrous Metallurgy. 2025;(2):19-29. https://doi.org/10.17073/0021-3438-2025-2-19-29

Views: 21


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)