Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Characterization of an atypical intermediate layer formed in Vanyukov furnaces during smelting of charges with a high content of technogenic materials

https://doi.org/10.17073/0021-3438-2025-2-5-18

Abstract

The growing need for recycling, along with the depletion of high-grade ore concentrates, has led to the inclusion of previously accumulated technogenic materials — such as metallurgical slags, sludge from settling ponds of recirculating water systems, and similar waste – into the charge of primary smelting units. The share of such feedstock in the furnace charge now reaches approximately 25 %, which has resulted in serious technological disruptions to the stable operation of primary autogenous smelting units. In Vanyukov furnaces, this is manifested by the appearance – alongside the typical smelting products (matte and slag) – of a new atypical phase, the so-called intermediate layer. The formation of this layer leads to adverse effects, including the obstruction of flow paths from the furnace hearth to the slag and matte siphons, ultimately causing a complete shutdown of the unit. A sample of this abnormal product, collected from an industrial furnace during a period of process instability, was analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). These methods allowed the determination of temperature ranges corresponding to phase transformations of the components comprising the intermediate layer. The results obtained can be used to define optimal parameters for stable smelting operation and to develop technical solutions that prevent conditions favorable for the formation of refractory accretions.

About the Authors

L. V. Krupnov
Polar Division of PJSC «MMC «Norilsk Nickel»; N.M. Fedorovsky Polar State University
Russian Federation

Leonid V. Krupnov – Cand. Sci. (Eng), Chief Metallurgist, Head for Process Planning and Monitoring at the Science and Technology Department; Associate Professor at the Department of Non-Ferrous Metallurgy

2 Gvardeyskaya sq., Norilsk 663302

7 50-Let Oktyabrya Str., Norilsk 663310



R. A. Pakhomov
LLC Gipronikel Institute
Russian Federation

Roman A. Pakhomov – Cand. Sci. (Eng), Senior Researcherof the Department of Research and Development of the Pyrometallurgy laboratory

11 Grazhdansky Prosp., Saint-Petersburg 195220



A. V. Kaverzin
N.M. Fedorovsky Polar State University
Russian Federation

Anton V. Kaverzin – Senior Lecturer, Department of NonFerrous Metallurgy

7 50-Let Oktyabrya Str., Norilsk 663310



Ya. I. Kosov
LLC Gipronikel Institute
Russian Federation

Yaroslav I. Kosov – Cand. Sci. (Eng), Researcher, Department of Research and Development of the Pyrometallurgy laboratory

11 Grazhdansky Prosp., Saint-Petersburg 195220



P. V. Malakhov
Polar Division of PJSC «MMC «Norilsk Nickel»
Russian Federation

Pavel V. Malakhov – Main Engineer, Center for Engineering Support of Production

2 Gvardeyskaya sq., Norilsk 663302



References

1. Вурдова Н.Г., Голубев О.В., Неделин С.В., Петелин А.Л., Полулях Л.А., Черноусов П.И. Рециклинг: Учебник. М.: МИСИС, 2020. 746 с.

2. Kandalam A, Reuter MA, Stelter M, Reinmöller M, Gräbner M, Richter A, et al. A review of top-submerged lance (TSL) processing. Part I: Plant and reactor engineering. Metals. 2023;13(10):1728. http://dx.doi.org/10.3390/met13101728

3. Kandalam A, Reuter MA, Stelter M, Reinmöller M, Gräbner M, Richter A, et al. A Review of top submerged lance (TSL) processing. Part II: Thermodynamics, slag chemistry and plant flowsheets. Metals. 2023;13(10): 1742. http://dx.doi.org/10.3390/met13101742

4. Liu Z, Xia L. The practice of copper matte converting in China. Mineral Processing and Extractive Metallurgy . 2018;128(1-2):117—124. http://dx.doi.org/10.1080/25726641.2018.1543147

5. Shibasaki T, Hayashi M. Top-blown injection smelting and converting: The Mitsubishi process. JOM. 1991;43(9):20—26. http://dx.doi.org/10.1007/bf03222230

6. Swinbourne D.R., West R.C., Reed M.E., Sheeran A. Computational thermodynamic modelling of direct to blister copper smelting. Mineral Processing and Extractive Metallurgy. 2011;120(1):1—9. http://dx.doi.org/10.1179/1743285510y.0000000003

7. Chen Ch., Zhang L., Jahanshahi Sh. Application of MPE model to direct-to-blister flash smelting and development of minor elements. In: Copper International Conference: Proceeding of Copper 2013 (Santiago, Chile, 2013). P. 857—871. https://doi.org/10.13140/2.1.4067.1360

8. Taskinen P., Kojo I. Fluxing options in the direct-to-blister copper smelting. In: Proceedings of the VIII International Conference on Molten Slages, Fluxes and Salt — Molten 2009. (Santiago, Chile, 2009). P. 1139—1151.

9. Sun Y.Q., Chen M., Cui Z.X., Contreras L., Zhao B.J. Phase equilibria of ferrous-calcium silicate slags in the liquid/spinel/white metal/gas system for the copper converting process. Metallurgical and Materials Transactions: B. 2020;5(51):2012—2020. https://doi.org/10.1007/s11663-020-01887-9

10. Xie S., Zhao B.J. Phase equilibrium studies of nonferrous smelting slags: A review. Metals. 2024;14(278): 1—19. https://doi.org/10.3390/met14030278

11. Krupnov L. V., Midyukov D. O., Malakhov P. V. Ways to cover the raw material demand in the copper-nickel sector. Obogashchenie rud. 2022;2:37—41. (In Russ.). https://doi.org/10.17580/or.2022.02.06

12. Krupnov L.V., Tsymbulov L.B., Malakhov P.V., Ozerov S.S. Operation of autogenous units in the Polar Division of Norilsk Nickel during processing of raw materials with reduced energy potential. Tsvetnyye metally. 2022;2:40—48. (In Russ.). https://doi.org/10.17580/tsm.2022.02.05

13. Krupnov L.V., Rumyantsev D.V., Popov V.A., Malakhov P.V., Kaverzin A.V. Technical solutions to improve operating conditions of Vanyukov furnace while processing technogenic feed. Metallurg. 2024;4:106—111. (In Russ.). https://doi.org/10.52351/00260827_2024_4_106

14. Taskinen P, Jokilaakso A. reaction sequences in flash smelting and converting furnaces: An in-depth view. Metallurgical and Materials Transactions: B. 2021; 52(5):3524—3542. http://dx.doi.org/10.1007/s11663-021-02283-7

15. Крупнов Л.В. Механизм образования тугоплавкой настыли в печах взвешенной плавки и способы ее устранения: Автореф. дис. ... канд. техн. наук. СПб, Национальный минерально-сырьевой ун-т «Горный», 2015. 19 с.

16. Kaur R., Nexhip C., Krippner D., George-Kennedy D., Routledge M. “Double Flash” technology after 16 years. In: Papers to be presented at the thirteenth International Flash Smelting Congress (2—8 October 2011, Zambia). Livingstone, Africa, 2011. 13 p.

17. Jiménez F., Ramos M., Pérez I. A review of recent improvements to control weak acid production at the Huelva smelter. In: Papers to be presented at the thirteenth International Flash Smelting Congress (2—8 October 2011, Zambia). Livingstone, Africa, 2011. 22 p.

18. Crundwell F.K., Moats M.S., Ramachandran V., Robinson T.G., Davenport W.G. Flash smelting of nickel sulfide concentrates. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. 2011;215—232. http://dx.doi.org/10.1016/b978-0-08-096809-4.10018-8

19. Zhao B., Hayes P., Jak E. Effects of CaO, Al2O3 and MgO on liquidus temperatures of copper smelting and converting slags under controlled oxygen partial pressures. Journal of Mining and Metallurgy, Section B: Metallurgy. 2013;49(2):153—159. http://dx.doi.org/10.2298/jmmb120812009z

20. Xie S., Yuan X., Liu F., Zhao B. Control of copper content in flash smelting slag and the recovery of valuable metals from slag. A Thermodynamic Consideration Metals. 2023;13(1):153. http://dx.doi.org/10.3390/met13010153

21. Kojo I., Storch H. Copper production with Outokumpu flash smelting: an update. In: International Symposium on Sulfide smelting 2006. Vol. 8: Sohn International Symposium. Advanced Processing of Metals and Materials. The Minerals, Metals & Materials Society. San Diego, California, USA, 2006. P.225—238.

22. Wang G., Cui Y., Li X., Shi R., Yang J., Yang S. et al. Structure and adaptability of FexO—SiO2—MgO— 15 wt. % CaO—0.026 wt. % NiO slag with the Fe/SiO2 mass ratio of 1.2 in flash matte smelting. Ceramics International. 2023;49(2):2531—2539. http://dx.doi.org/10.1016/j.ceramint.2022.09.232

23. Yakimov I.S. System of X-ray phase identification of essentially multiphase materials. Zavodskaya laboratoriya. Diagnostika materialov. 2007;11(73):32—37. (In Russ.).

24. Yakimov I.S., Dubinin P.S., Piksina O.E. Regularized multireflex method of reference intensities for quantitative X-ray phase analysis of polycrystalline materials. Zavodskaya laboratoriya. Diagnostika materialov. 2009;12(76):71—80. (In Russ.).

25. Пиксина О.Е., Ружников С.Г., Дубинин П.С. Рентгеновский спектральный анализ: Методические указания. Материаловедение и технология новых материалов. Красноярск: СибФУ, 2012. 43 с.

26. Kolesnikov A.S. Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russian Journal of Non-Ferrous Metals. 2015;56(1):1—5. https://doi.org/10.3103/S1067821215010113

27. Kolesnikov A.S., Serikbaev B.E., Kenzhibaeva G.S., Botabaev N.E., Shapalov S.K., Kolesnikova O.G., Iztleuov G.M., Suigenbayeva A.A., Asylbekova D.D., Ashirbaev K.A., Kolesnikova V.A., Zolkin A.L., Isaev G.I., Alchinbaeva O.Z., Kutzhanova A.N. Processing of nonferrous metallurgy waste slag for its complex recovery as a secondary mineral raw material. Refractories and Industrial Ceramics. 2021;62(4):375—380. https://doi.org/10.1007/s11148-021-00611-7

28. Kolesnikov A.S., Kenzhibaeva G.S., Botabaev N.E., Kutzhanova A.N., Iztleuov G.M., Suigenbaeva A.Z., Ashirbaev K.A., Kolesnikova O.G. Thermodynamic modeling of chemical and phase transformations in a waelz process-slag — carbon system. Refractories and Industrial Ceramics. 2021;61(3):289—292. https://doi.org/10.1007/s11148-020-00474-4

29. Kolesnikov A., Fediuk R., Amran M., Klyuev S., Klyuev A., Volokitina I., Naukenova A., Shapalov S., Utelbayeva A., Kolesnikova O., Bazarkhankyzy A. Modeling of non-ferrous metallurgy waste disposal with the production of iron silicides and zinc distillation. Materials. 2022;15(7):1—14. https://doi.org/10.3390/ma15072542

30. Zhanikulov N., Kolesnikov A.S., Taimasov B.T., Zhakipbayev B.Y., Shal A.L. Influence of industrial waste on the structure of environmentally friendly cement clinker. Complex Use of Mineral Resources. 2022;4(323):84—91. https://doi.org/10.31643/2022/6445.44

31. Kolesnikov A.S. Thermodynamic simulation of silicon and iron reduction and zinc and lead distillation in zincoligonite ore-carbon systems. Russian Journal of Non-Ferrous Metals. 2014;55(6):513—518. https://doi.org/10.3103/S1067821214060121

32. Donayev A., Kolesnikov A., Shapalov Sh., Sapargaliyeva B., Ivakhniyuk G. Studies of waste from the mining and metallurgical industry, with the determination of its impact on the life of the population. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2022;4(454):55—68. https://doi.org/10.32014/2022.2518-170x.200

33. Sharma R.C., Chang Y.A. A thermodynamic analysis of the copper-sulfur system. Metall Transactions: B. 1980;11:575—583. https://doi.org/10.1007/BF02670137

34. Банных О.А., Будберг П.Б., Алисова С.П., Дриц М.Е. Диаграммы состояния двойных и многокомпонентных систем на основе железа: Справочник. М.: Металлургия, 1986. 440 с.

35. Levin M., Robbins C.R., McMurdie H.F. Phase diagrams for ceramists. The American Ceramic Society. Columbus, Ohio. 1964. 601 p.

36. Bale C. W., Bélisle E., Chartrand P., Decterov S. A., Eriksson G., Gheribi A.E., Hack K., Jung I.H., Kang Y.B., Melançon J., Pelton A.D., Petersen S., Robelin C.. Sangster J., Spencer P., Van Ende M-A. FactSage thermochemical software and databases 2010—2016. Calphad. 2016;54:35—53. https://doi.org/10.1016/j.calphad.2016.05.002

37. Krupnov L.V., Starykh R.V., Petrov A.F. Mechanism of formation of refractory crust in flash smelting furnaces of Nadezhda metallurgical plant. Tsvetnye metally. 2013;(2):46—49. (In Russ.).

38. Крупнов Л.В., Пахомов Р.А., Каверзин А.В., Косов Я.И., Малахов П.М. Изучение свойств промежуточного слоя печей Ванюкова при переработке медного никельсодержащего сырья. В сб.: Сборник докладов 12-го международного конгресса Цветные Металлы и Минералы — 2024. (Красноярск, 09—13 сентября 2024 г.). Красноярск: Научно-инновационный центр, 2024. С. 883—888.


Review

For citations:


Krupnov L.V., Pakhomov R.A., Kaverzin A.V., Kosov Ya.I., Malakhov P.V. Characterization of an atypical intermediate layer formed in Vanyukov furnaces during smelting of charges with a high content of technogenic materials. Izvestiya. Non-Ferrous Metallurgy. 2025;(2):5-18. https://doi.org/10.17073/0021-3438-2025-2-5-18

Views: 30


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)