Enhancing efficiency and modeling the operation of the afterburning chamber in the Vanyukov furnace
https://doi.org/10.17073/0021-3438-2025-1-80-90
Abstract
This study investigates the process of enhancing the efficiency of the afterburning chamber in the Vanyukov furnace. Various operational modes of the furnace and the chamber were analyzed to identify optimal conditions for sulfur oxidation and afterburning, as well as methods for reducing accretions. Measurements and analyses of off-gas compositions were conducted, and the dust content was determined.
Simplifications and assumptions were applied in the calculations, enabling the modeling of gas flow, thermodynamic processes, velocity profiles, and interaction zones. Some thermodynamic calculations of counter-penetrating gas jets were based on hypotheses derived from heat exchange theories in mixing devices. Experimental results of numerical modeling and predictive simulations within the afterburning chamber are presented. Parameters were measured, and aerodynamic characteristics of the tuyeres were charted at an average oxygen supply to the chamber of no more than 2500 n.m3/h (38 n.m3 per ton of batch load). Recommendations for effective technological operations were proposed. The expertise of specialists from the Sredneuralsk Copper Smelter, along with the results of trials and process modeling, facilitated the selection of the optimal tuyere air distribution. The findings reveal the complexity of aerodynamic and thermodynamic processes occurring within the afterburning chamber. These include interactions between tuyere cooling airflows, heat release from exothermic oxidation reactions, and forced and natural convection of off-gases with varying temperature gradients, all visualized within a single projection.
About the Authors
V. А. KirsanovRussian Federation
Vladimir A. Kirsanov – Advisor to the General Director for Engineering
Yu. F. Poberezhny
Russian Federation
Yuri F. Poberezhny – Head of the Bureau of Engineering and Innovation
N. G. Mikhailov
Russian Federation
Nikolai G. Mikhailov – Leading Engineer of the Technological Audit Department
M. M. Sladkov
Russian Federation
Maxim M. Sladkov – Chief Engineer
S. N. Gotenko
Russian Federation
Sergey N. Gotenko – Head of the Technical Department
References
1. Лисиенко В.Г., Щелоков Я.М., Ладыгичев М.Г. Плавильные агрегаты: теплотехника, управление и экология. М.: Теплотехник, 2005. 912 с.
2. Лисиенко В.Г., Щелоков Я.М., Ладыгичев М.Г. Топливо. Рациональное сжигание, управление и технологическое использование. М.: Теплотехник, 2004. 832 с.
3. Набойченко С.С., Агеев Н.Г., Дорошкевич А.П., Жуков В.П., Елисеев Е.И. Процессы и аппараты цветной металлургии. Екатеринбург: УГТУ—УПИ, 2005. 700 с.
4. Sborshchikov G.S., Volodin A.M., Valavin V.S. Free convection of the melt in the furnace with a bubble layer during its blowing through a side tuyere established under the layer level. Izvestiya. Non-Ferrous Metallurgy. 2015;(2):58—68. (In Russ.).
5. Гофман Г.О. Металлургия меди. Свердловск: ГНТИ, 1934. 475 с.
6. Ванюков А.В., Зайцев В.Я. Шлаки и штейны цветной металлургии. М.: Металлургия, 1969. 408 с.
7. Vaisburd S., Berner A., Brandon D.G., Kozhakhmetov S., Kenzhaliyev E., Zhalelev R. Slags & mattes in Vanyukov’s process for the extraction of copper. Metallurgical and Materials Transactions. 2002;(33):551—559. https://doi.org/10.1007/s11663-002-0034-1
8. Zhang H.L., Zhou C.Q., Bing W.U, Chen Y.M. Numerical simulation of multiphase flow in a Vanyukov furnace. Journal of Southern African Institute of Mining and Metallurgy. 2015;(115):457—463.
9. Ануфриев В.П., Лисиенко В.Г., Чесноков Ю.Н., Лаптева А.В. Возможности реализации углеродной политики в российских регионах. В сб: Материалы XII Международной конференции «Российские регионы в фокусе перемен» (16—18 ноября 2017 г.). Екатеринбург: УМЦ УПИ, 2018. Ч. 2. С. 536—550.
10. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992. 672 с.
11. Кутателадзе С.С. Основы теории теплообмена. М.: Атомиздат, 1979. 416 с.
12. Баскаков А.П., Берг Б.В., Витт О.К., Филипповский Н.Ф. Теплотехника. М.: Энергоатомиздат, 1991. 224 с.
13. Абрамович Г.Н., Гиршович Т.А., Крашенинников С.Ю., Секундов А.Н., Смирнова И.П. Теория турбулентных струй. М.: Наука, 1984. 710 с.
14. Colagrossi A., Marrone S., Colagrossi P., Le Touze D. Da Vinci’s observation of turbulence: A French-Italian study aiming at numerically reproducing the physics behind one of his drawings, 500 years later. Physics of Fluids. 2021;(33):1—16. https://doi.org/10.1063/5.0070984
15. Проданов С.А., Воронов Г.В. Особенности движения газовой среды в надфурменной зоне печи Ванюкова. В сб. докл.: Материалы V Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых (12—13 мая 2016 г.). Екатеринбург: УрФУ, 2016. С. 91—98.
16. Oliver T. Schmidt, Aaron Towne, Georgios Rigas, Tim Colonius, Guillaume A. Bres. Spectral analysis of jet turbulence. Journal of Fluid Mechanics. 2017;(855):953—982. https://doi.org/10.1017/jfm.2018.675
17. Khansa Mahjoub Mohammed Merghani. Experimental study of a human-like exhaled airflow configuration and droplets dynamics in indoor environment. Paris: Universite Paris-EstCreteilVal-de-Marne, 2021. 183 p. https://theses.hal.science/tel-04022879
18. Barois T., Viggiano B., Basset T., Cal R.B., Volk R. Compensation of seeding bias for particle tracking velocimetry in turbulent flows. Physical Review Fluids. 2023;(8):1—16. https://doi.org/10.1103/PhysRevFluids.8.074603
19. Viggiano B., Basset T., Bourgoin M., Cal R.B., Chevillard L., Meneveau Ch., Volk R. Lagrangian modeling of a nonhomogeneous turbulent shear flow: Molding homogeneous and isotropic trajectories into a jet. Physical Review Fluids. 2024;(9):1—13. https://doi.org/10.1103/PhysRevFluids.9.044604
20. Xinchen Zhang, Zhen Zhang, Alfonso Chinnici, Zhiwei Sun, Javen Qinfeng Shi, Graham J. Nathan, Rey C. Chin. Physics-informed data-driven unsteady Reynolds averaged Navier—Stokes turbulence modeling for particle-laden jet flows. Physical Review Fluids. 2024;(36):1—23. https://doi.org/10.1063/5.0206090
21. Timothy C.W. Lau, Graham J. Nathan. Influence of Stokes number on the velocity and concentration distributions in particle-laden jets. Journal of Fluid Mechanics. 2014;(757):432—457. https://doi.org/10.1017/jfm.2014.496
22. Aitor Amatriain, Corrado Gargiulo, Gonzalo Rubio. Generalized wall-modeled large eddy simulation model for industrial applications. Physics of Fluids. 2024;(36): 1—21. https://doi.org/10.1063/5.0180690
23. Jonathan B. Freund. Nozzles, turbulence, and jet noise prediction. Journal of Fluid Mechanics. 2019;(860):1—4. https://doi.org/10.1017/jfm.2018.823
24. Muppidi S., Mahesh K., Direct numerical simulation of round turbulent jets in crossflow. Journal of Fluid Mechanics. 2007;(574):59—84. https://doi.org/10.1017/S0022112006004034
25. Yu Zhou, Dewei Fan, Bingfu Zhang, Ruiying Li, Bernd R. Noack Artificial intelligence control of a turbulent jet. Journal of Fluid Mechanics. 2020;(897): 1—46. https://doi.org/10.1017/jfm.2020.392
26. Худяков П.Ю. Газодинамика и теплообмен при соударении прямоточных газовых струй: Автореф. Дис. … канд. физ.-мат. наук. Екатеринбург: УрФУ, 2013.
27. Phoebe Kuhn. Linear modeling of coherent structures in the self-similar region of a round turbulent jet: Diss. … Dr. Eng. Berlin: Technischen Universität Berlin, 2023. https://doi.org/10.14279/depositonce-18798
28. Велькин В.И., Школьный А.В., Кириллов М.П., Ачкеев М.В., Гурин А.А. Завихритель: Патент 2321779 (РФ). 2006.
29. Francis B.J., Joubert H., Bakker M.L., Nikolic S., Gwynn-Jones S. Lance for use in a top submerged lance furnace. WO 2017/195105. 2017.
30. Шатохин И.М., Кузьмин А.Л. Способ циркуляционного вакуумирования жидкого металла, система и устройства для его осуществления: Патент 2213147 (РФ). 2003.
31. Земцов Г.А., Пучков А.Е., Фролов Л.И. Фурма: Патент 2355779 (РФ). 2009.
Review
For citations:
Kirsanov V.А., Poberezhny Yu.F., Mikhailov N.G., Sladkov M.M., Gotenko S.N. Enhancing efficiency and modeling the operation of the afterburning chamber in the Vanyukov furnace. Izvestiya. Non-Ferrous Metallurgy. 2025;(1):80-90. https://doi.org/10.17073/0021-3438-2025-1-80-90