Effect of hot deformation and heat treatment conditions on the structure and mechanical properties of the VIT1 alloy based on orthorhombic titanium aluminide
https://doi.org/10.17073/0021-3438-2025-1-67-79
Abstract
The effect of thermo-mechanical treatment on the structure and mechanical properties of the hot-rolled orthorhombic titanium aluminide alloy VIT1 was investigated. The evolution of the microstructure and mechanical behavior of the alloy during hot deformation in the temperature range of 850–1050 °C was studied. It was established that at a temperature of 950 °C, a strain rate of ε· = 5 ·10–4 s–1 and a strain of ε = 70 %, the microstructure formed during hot deformation, due to the processes of recrystallization and spheroidization, consisted of grains ~1 μm in size, comprising β-, α2-, and O-phases. It was shown that increasing the deformation temperature led to the dissolution of O-phase particles and a significant deceleration in the development of dynamic recrystallization. Homogeneous fine-grained billets were obtained via multi-directional isothermal forging, and the effect of heat treatment (quenching and aging) on the structure and mechanical properties of the alloy was examined. Based on a preliminary study of the influence of heating temperature on the alloy’s structure and properties, the temperature ranges for quenching and aging were determined. It was demonstrated that the most balanced levels of strength, ductility, and heat resistance were achieved after heat treatment under the following conditions: holding for 4 h at 1025 °C followed by air cooling, and aging at 850 °C for 6 h.
Keywords
About the Authors
V. S. SokolovskyRussian Federation
Vitaly S. Sokolovsky – Cand. Sci. (Eng.), Researcher of the Laboratory of Bulk Nanostructured Materials
E. I. Nozdracheva
Russian Federation
Elena I. Nozdracheva – Junior Researcher of the Laboratory of Bulk Nanostructured Materials
K. A. Kyaramyan
Russian Federation
Karen A. Kyaramyan – Head of the Metallurgical Production Department
Yu. G. Bykov
Russian Federation
Yuri G. Bykov – Cand. Sci. (Eng.), Chief Specialist of the Metallurgical Production Department
E. B. Alekseev
Russian Federation
Evgeny B. Alekseev – Cand. Sci. (Eng.), Head of Sector of the Department “Titanium, magnesium, beryllium and aluminum alloys” of the Laboratory No. 8
G. A. Salishchev
Russian Federation
Gennady A. Salishchev – Dr. Sci. (Eng.), Professor, Head of the Laboratory of Bulk Nanostructured Materials
References
1. НИЦ «Курчатовский институт». Всероссийский научно-исследовательский институт авиационных материалов. Плиты из интерметаллидного титанового сплава марки ВИТ1. URL: https://catalog.viam.ru/catalog/vit1/plity-iz-intermetallidnogo-titanovogosplava-marki-vit1/ (дата обращения: 28.02.2024).
2. Alekseev E.B., Nochovnaya N.A., Panin P.V. Investigation of structure and phase composition of experimental heat resistant alloy based on Ti2AlNb intermetallide in deformed state. Titan. 2014;(4):12—17. (In Russ.).
3. Каблов Е.Н., Иванов В.И., Анташев В.Г., Савельева Ю.Г. Сплав на основе титана и изделие, выполненное из него: Патент 2001125968/02 (РФ). 2003.
4. Sui X., Wang G., Liu Q., Liu Y., Chen Y. Fabricating Ti2AlNb sheet with tensile strength higher than 1500 MPa by hot packed rolling spark-plasma-sintered pre-alloyed Ti2AlNb powder at the B2 + O phase field. Journal of Alloys and Compounds. 2021;876:160110. https://doi.org/10.1016/j.jallcom.2021.160110
5. Sui X.C., Liu Q., Luo S.Y., Liu Y.K., Li Z.L., Kang Q.X., Wang G.F. Achieving high ductility of Ti2AlNb sheet without sacrificing the tensile strength without post heat treatment. Materials Science & Engineering A. 2022;840:142897. https://doi.org/10.1016/j.msea.2022.142897
6. Yang Z., Liu H., Cui Z., Zhang H., Chen F. Refinement mechanism of centimeter-grade coarse grains in as-cast Ti2AlNb-based alloy during multi-directional forging. Materials & Design. 2022;225(5):111508. https://doi.org/10.1016/j.matdes.2022.111508
7. Wei J.-X., Jia Y., Zhang Y.-Y., Luo X.-Y., Zhao X.-X., Zhang C.-J., Cao S.-Z., Du Z.-H., Han J.-C. Effect of hot rolling process on the evolution of microstructure and mechanical properties of Ti2AlNb-based alloy foil during cold rolling. Materials Characterization. 2024;210:113784. https://doi.org/10.1016/j.matchar.2024.113784
8. Shagiev M.R., Salishchev G.A. Microstructure and mechanical properties of nanostructured intermetallic alloy based on Ti2AlNb. Materials Science Forum. 2008; 584—586(1):153—158. https://doi.org/10.4028/www.scientific.net/MSF.584586.153
9. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Ways of optimizing the properties of alloys based on titanium intermetallides. Aviatsionnye materialy i tekhnologii. 2012;S:196—206. (In Russ.).
10. Boehlert C.J., Miracle D.B. Part II. The creep behavior of Ti—Al—Nb O + bсс orthorhombic alloys. Metallurgical and Materials Transactions A. 1999;30:2349—2367. https://doi.org/10.1007/s11661-999-0244-0
11. Skvortsova S.V., Il’in А.А., Mamonov А.М., Nochovnaya N.А., Umarova О.Z. Structure and properties of semifinished sheet products made of an intermetallic refractory alloy based on Ti2AlNb. Materials Science. 2016;51(6):821—826. https://doi.org/10.1007/s11003-016-9907-3
12. Илларионов А.Г., Демаков С.Л., Водолазский Ф.В., Степанов С.И., Илларионова С.М., Шaбанов М.А., Попов А.А. Сплавы на основе орторомбического интерметаллида титана Ti2AlNb: фазовый состав, легирование, структура, свойства. Металлург. 2023;(3): 42—54. https://doi.org/10.52351/00260827_2023_03_42
13. Illarionov A.G., Demakov S.L., Vodolazsky F.V., Stepanov S.I., Illarionova S.M., Shabanov M.A., Popov A.A. Alloys based on orthorhombic titanium intermetallic compound Ti2AlNb: phase composition, alloying, structure, properties. Metallurgist. 2023;(3):42—54 (In Russ.).
14. Goyal K., Sardana N. Mechanical properties of the Ti2AlNb intermetallic: A review. Transactions of the Indian Institute of Metals. 2021;74(8):1839—1853. https://doi.org/10.1007/s12666-021-02307-5
15. Zherebtsov S., Kudryavtsev E., Kostjuchenko S., Malysheva S., Salishchev G.. Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging. Materials Science and Engineering A. 2012;536:190—196. https://doi.org/10.1016/j.msea.2011.12.102
16. Zhang Y., Tian S., Jiang H., Zhang G., Zhang S., Lin H., Wang J. Research on hot deformation behavior of Mocontaining Ti2AlNb-based alloy. Advanced Engineering Materials. 2021;23(10):2100. https://doi.org/10.1002/adem.202100449
17. Wang W., Zeng W., Liu Y., Xie G., Liang X. Microstructural evolution and mechanical properties of Ti—22Al—25Nb (at. %) orthorhombic alloy with three typical microstructures. Journal of Materials Engineering and Performance. 2018;27:293—303. https://doi.org/10.1007/s11665-017-3040-9
18. Соколовский В.С., Волокитина Е.И., Салищев Г.А., Быков Ю.Г., Кярамян К.А. Способ изготовления лопаток газотурбинных двигателей из интерметаллидного сплава на основе орторомбического алюминида титана: Патент 2800270 (РФ). 2023.
19. Соколовский В.С., Волокитина Е.И., Салищев Г.А., Быков Ю.Г., Кярамян К.А. Способ изготовления лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана: Патент 2790704 (РФ). 2023.
20. Соколовский В.С., Волокитина Е.И., Салищев Г.А., Быков Ю.Г., Кярамян К.А. Способ изготовления лопаток газотурбинных двигателей из деформированных заготовок сплава на основе орторомбического алюминида титана: Патент 2790711 (РФ). 2023.
21. Khadzhieva O.G., Illarionov A.G., Popov A.A. Effect of aging on structure and properties of quenched alloy based on orthorhombic titanium aluminide Ti2AlNb. The Physics of Metals and Metallography. 2014;115:12—20. https://doi.org/10.7868/S0015323014010094
22. He D., Li L., Chi J., Zhang H., Zhang G., He G., Yan J., Zhang H., Guo W. Promoted phase transformation of α2 to O in Ti2AlNb alloy with improved mechanical performance via laser shock peening. Materials & Design. 2023;229:111900. https://doi.org/10.1016/j.matdes.2023.111900
23. Соколовский В.С., Волокитина Е.И., Салищев Г.А., Быков Ю.Г., Кярамян К.А. Способ изготовления лопаток газотурбинных двигателей из сплава на основе алюминида Ti2AlNb: Патент 2801383 (РФ). 2023.
24. Kaibyshev O.A. Superplasticity of alloys, intermetallics and ceramics. Berlin: Springer-Verlag, 1992. 317 p.
25. Qu S.J., Feng A.H., Shagiev M.R., Xie H., Li B.B., Shen J. Superplastic behavior of the fine-grained Ti—21Al—18Nb—1Mo—2V—0.3Si intermetallic alloy. Letters on Materials. 2018;8(4s):567—571. https://doi.org/10.22226/2410-3535-2018-4-567-571
26. Wang W., Zeng W., Xue C., Liang X., Zhang J. Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti—22Al—25Nb (at.%) orthorhombic alloy. Intermetallics. 2015;56:79—86. http://dx.doi.org/10.1016/j.intermet.2014.07.011
27. Wu Y., Fan R.-L., Zhou X.-J., Chen M.-H. Microstructure and hot flow stress at 970 °C of various heat-treated Ti2AlNb sheets. Rare Metals. 2020;39(6):695—706. https://doi.org/10.1007/s12598-020-01408-2
Review
For citations:
Sokolovsky V.S., Nozdracheva E.I., Kyaramyan K.A., Bykov Yu.G., Alekseev E.B., Salishchev G.A. Effect of hot deformation and heat treatment conditions on the structure and mechanical properties of the VIT1 alloy based on orthorhombic titanium aluminide. Izvestiya. Non-Ferrous Metallurgy. 2025;(1):67-79. https://doi.org/10.17073/0021-3438-2025-1-67-79