Effect of rotary forging on the structure and mechanical properties of two eutectic alloys of the Al–La and Al–Ca–La systems
https://doi.org/10.17073/0021-3438-2025-1-58-66
Abstract
Recently developed aluminum alloys based on the eutectic composition of the Al–Ca system exhibit excellent casting properties and, unlike silumins, show good deformability. The development of multi-component alloys, where calcium is partially replaced by lanthanum, cerium, nickel, and other eutectic-forming elements, improves their properties by producing a finer eutectic structure and enhancing their heat resistance. These alloys can all be strengthened through deformation, with severe plastic deformations being especially effective. Among these methods, rotary forging is of particular interest due to its ability to produce long billets. Lanthanum, at a specific concentration, significantly improves the alloy’s plasticity, making the Al–La system particularly well-suited for deformation processing. This study investigates the effect of rotary forging on the microstructure and mechanical properties of two eutectic alloys, Al–10La and Al–6Ca–3La (wt. %). Billets in the as-cast state were rotary forged from an initial diameter of 20 mm to a final nominal diameter of 5 mm under isothermal conditions: at room temperature for the Al–10La alloy and at 200 °C for the Al–6Ca–3La alloy. The results showed that rotary forging led to an elongated structure in both alloys, with micron-sized grains forming inside the dendrites and eutectic particles being refined. In the Al–10La alloy, the dislocation density was low, while in the Al–6Ca–3La alloy, the dislocation density was higher. The Al–10La alloy showed a slight tendency to soften during rotary forging, whereas the Al–6Ca–3La alloy exhibited a marked tendency to strengthen (its strength doubled). Both alloys retained high plasticity (elongation) after forging. After annealing at 300 °C, the strength of both alloys remained stable. The tensile strength of the Al–6Ca–3La alloy at 300 °C was higher than that of the Al–10La alloy, with values of 53 MPa and 44 MPa, respectively.
About the Authors
V. А. AndreevRussian Federation
Vladimir A. Andreev – Cand. Sci. (Eng.), Leading Researcher
M. V. Gorshenkov
Russian Federation
Mikhail V. Gorshenkov – Cand. Sci. (Eng.), Assistant Professor of the Department of physical materials science
E. A. Naumova
Russian Federation
Evgeniya A. Naumova – Cand. Sci. (Eng.), Assistant Professor of the Department of metal forming
S. O. Rogachev
Russian Federation
Stanislav O. Rogachev – Dr. Sci. (Eng.), Assistant Professor of the Department of physical metallurgy and physics of strength
References
1. Ozturk K., Chen Long-Qing, Liu Zi-Kui. Thermodynamic assessment of the Al—Ca binary system using random solution and associate models. Journal of Alloys and Compounds. 2002;340(1—2):199—206. https://doi.org/10.1016/S0925-8388(01)01713-3
2. Hawksworth A., Rainforth W.M., Jones H. Solidification microstructure selection in the Al-rich Al—La, Al—Ce and Al—Nd systems. Journal of Crystal Growth. 1999;197(1—2):286—296. https://doi.org/10.1016/S0022-0248(98)00955-5
3. Cacciamani G., Ferro R. Thermodynamic modeling of some aluminium-rare earth binary systems: Al—La, Al— Ce and Al—Nd. Calphad. 2001;25(4):583—597. https://doi.org/10.1016/S0364-5916(02)00009-3
4. Czerwinski F. Cerium in aluminum alloys. Journal of Materials Science. 2020;55:24—72. https://doi.org/10.1007/s10853-019-03892-z
5. Voroshilov D.S., Sidelnikov S.B., Bespalov V.M., Sokolov R.E., Bermeshev T.V., Berngardt V.A., Lezhnev S.N., Durnopyanov A.V., Kovaleva A.A., Konstantinov I.L., Novikova O.S., Motkov M.M. Combined rolling-extrusion of various billets from the Al—Ce—La alloy for electrical wire production. The International Journal of Advanced Manufacturing Technology. 2024;131:4699—4725. https://doi.org/10.1007/s00170-024-13339-8
6. Belov N.A., Alabin A.N., Eskin D.G. Improving the properties of cold rolled Al—6%Ni sheets by alloying and heat treatment. Scripta Materialia. 2004;50(1):89—94. https://doi.org/10.1016/j.scriptamat.2003.09.033
7. Cao Z., Kong G., Che Ch., Wang Y., Peng H. Experimental investigation of eutectic point in Al-rich Al—La, Al— Ce, Al—Pr and Al—Nd systems. Journal of Rare Earths. 2017;35(10):1022—1028. https://doi.org/10.1016/S1002-0721(17)61008-1
8. Belov N.A., Zolotorevskii V.S. Casting alloys on the base of aluminum-nickel eutectic (nikalines) as possible alternative to silumins. Tsvetnye Metally. 2002;(2):99—105. (In Russ.).
9. Rogachev S.O., Naumova E.A., Lukina E.A, Zavodov A.V., Khatkevich V.M. High strength Al—La, Al— Ce, and Al—Ni eutectic aluminum alloys obtained by high-pressure torsion. Materials. 2021;14(21):6404. https://doi.org/10.3390/ma14216404
10. He Y., Liu J., Qiu Sh., Deng Zh., Zhang J., Shen Y. Microstructure evolution and mechanical properties of Al— La alloys with varying La contents. Materials Science and Engineering: A. 2017;701:134—142. https://doi.org/10.1016/j.msea.2017.06.023
11. Murashkin M.Y., Sabirov I., Medvedev A.E., Enikeev N.A., Lefebvre W., Valiev R.Z., Sauvage X. Mechanical and electrical properties of an ultrafine grained Al—8.5 wt.% RE (RE = 5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation. Materials and Design. 2016;90:433—442. https://doi.org/10.1016/j.matdes.2015.10.163
12. Shurkin P.K., Letyagin N.V., Yakushkova A.I., Samoshina M.E., Ozherelkov D.Y., Akopyan T.K. Remarkable thermal stability of the Al—Ca—Ni—Mn alloy manufactured by laserpowder bed fusion. Materials Letters. 2021;285:129074. https://doi.org/10.1016/j.matlet.2020.129074
13. Belov N.A., Naumova E.A., Eskin D.G. Casting alloys of the Al—Ce—Ni system: microstructural approach to alloy design. Materials Science and Engineering: A. 1999;271(1—2):134—142. https://doi.org/10.1016/S0921-5093(99)00343-3
14. Rogachev S.O., Naumova E.A., Karelin R.D., Andreev V.A., Perkas M.M., Yusupov V.S., Khatkevich V.M. Structure and mechanical properties of Al—Ca—Mn—Fe—Zr— Sc eutectic aluminum alloy after Warm equal channel angular pressing. Russian Journal of Non-Ferrous Metals. 2021;62:293—301. https://doi.org/10.3103/S1067821221030123
15. Xu R., Lu Y., Dai Y., Brognara A., Hahn H., Ivanisenko Y. Processing of high-strength thermal-resistant Al — 2.2 % cerium — 1.3 % lanthanum alloy rods with high electric conductivity by High Pressure Torsion Extrusion. Journal of Materials Science. 2024;59:9075—9090. https://doi.org/10.1007/s10853-024-09713-2
16. Duchaussoy A., Sauvage X., Edalati K., Horita Z., Renou G., Deschamps A., Geuser F.D. Structure and mechanical behavior of ultrafine-grained aluminum-iron alloy stabilized by nanoscaled intermetallic particles. Acta Materialia. 2019;167:89—102. https://doi.org/10.1016/j.actamat.2019.01.027
17. Rogachev S.O., Andreev V.A., Yusupov V.S., Bondareva S.A., Hatkevich V.M., Nikolaev E.V. Effect of rotary forging on microstructure evolution and mechanical properties of aluminum alloy / copper bimetallic material. Metals and Materials International. 2022;28: 1038-1046. https://doi.org/10.1007/s12540-020-00964-7
18. Klumpp A., Kauffmann A., Seils S., Dietrich S., Schulze V. Influence of cold rotary swaging on microstructure and uniaxial mechanical behavior in alloy 718. Metallurgical and Materials Transactions A. 2021;52:2021—4331. https://doi.org/10.1007/s11661-021-06371-w
19. Асфандияров Р.Н., Рааб Г.И. Исследование метода ротационного обжатия в условиях больших деформаций. Вестник УГАТУ. 2016;20(3(73)):3—6. Asfandiyarov R.N., Raab G.I. Investigation of the method of rotary swaging under the conditions of large strains. Vestnik UGATU. 2016;20(3(73)):3—6. (In Russ.).
20. Akopyan T.K., Belov N.A., Lukyanchuk A.A., Letyagin N.V., Sviridova Т.А., Petrova A.N., Fortuna A.S., Musin A.F. Effect of high pressure torsion on the precipitation hardening in Al—Ca—La based eutectic alloy. Materials Science and Engineering: A. 2021;802:140633. https://doi.org/10.1016/j.msea.2020.140633
Review
For citations:
Andreev V.А., Gorshenkov M.V., Naumova E.A., Rogachev S.O. Effect of rotary forging on the structure and mechanical properties of two eutectic alloys of the Al–La and Al–Ca–La systems. Izvestiya. Non-Ferrous Metallurgy. 2025;(1):58-66. https://doi.org/10.17073/0021-3438-2025-1-58-66