Production of cast master alloys with high chromium content using centrifugal SHS metallurgy
https://doi.org/10.17073/0021-3438-2025-1-27-40
Abstract
Cast master alloys of the Mo–Cr, W–Cr, and Cr–Al systems with high chromium content were produced using the methods of centrifugal SHS metallurgy. A thermodynamic analysis was performed to evaluate the combustion temperature and the equilibrium composition of the reaction products depending on the ratios of the initial components in the mixture. Based on this analysis, optimal compositions were identified for further experimental studies. The effectiveness of functional additives, namely calcium fluoride CaF2 (fluorspar) and sodium hexafluoroaluminate Na3[AlF6] (cryolite), was experimentally confirmed. These additives were shown to lower the melting point of the slag phase (reducing its viscosity), which facilitated phase separation during the production of cast master alloys from refractory metals using centrifugal SHS metallurgy. The experiments demonstrated the need to introduce excess amounts of MoO3 and WO3 during the production of Mo–Cr and W–Cr master alloys, respectively, due to incomplete reduction of molybdenum and tungsten from their oxides. Microstructural analysis of the obtained master alloys revealed a dendritic structure, which is typical for cast materials. EDS microanalysis showed that the chemical compositions of all synthesized alloys closely matched their calculated and target compositions. Composition analysis at different locations within the ingots revealed no significant variations in composition. X-ray phase analysis confirmed the presence of solid solution phases formed from the target elements. The results of inductively coupled plasma mass spectrometry (ICP-MS) confirmed that the chemical compositions of the synthesized Cr–W, Cr–Mo, and Cr–Al alloys fully comply with the permissible concentrations of both target elements and impurities.
About the Authors
A. N. KubanovaRussian Federation
Anastasiya N. Kubanova – Graduate Student; Junior Research Scientist
D. M. Ikornikov
Russian Federation
Denis M. Ikornikov – Research Scientist
V. N. Sanin
Russian Federation
Vladimir N. Sanin – Dr. Sci. (Eng.), Senior Research Scientist
D. A. Martynov
Russian Federation
Dmitrу A. Martynov – General Manager
References
1. Гольдштейн М.И., Грачев С.В., Векслер Ю.Г. Специальные стали. М: МИСИС, 1999. 408 с.
2. Солнцев Ю.П., Пряхин Е.И., Пирайнен В.Ю. Специальные материалы в машиностроении. СПб.: Химиздат, 2004. 640 с.
3. Лякишев Н.П., Гасик М.И. Металлургия хрома. М.: Элиз, 1999. 581 с.
4. Yukhvid V.I., Gorshkov V.A., Sanin V.N., Andreev D.E., Vdovin Yu.S. SHS metallurgy of refractory materials based on molybdenum. In: Explosive production of new materials: science, technology, business, and innovations: 14th International Symposium (Saint Petersburg, 14—18 May 2018). Ed. M.I. Alymov, O.A. Golosova. Moscow: Torus Press, 2018. Р. 294—297.
5. Конструкционные сплавы хрома: Сб. науч. трудов. Отв. ред. В.И. Трефилов. Киев: Наукова думка, 1986. 216 c.
6. Kolobov Yu.R., Manokhin S.S., Kudymova Yu.E., Klimenko D.N., Sanin V.N., Ikornikov D.M., Andreev D.E. SHS-produced cast Ni—Cr—W alloy: structural characterization and mechanical properties. In: Book of abstracts of XIV International Symposium on Self-Propagating High Temperature Synthesis (SHS-2017) (Tbilisi, Georgia, 25— 28 September 2017). 2017. Р. 230—231.
7. Yukhvid V.I., Andreev D.E., Sanin V.N., Sachkova N.V. SHS metallurgy of composite materials based on the Nb—Si system. Russian Journal of Non-Ferrous Metals. 2018;59(1):42—49.
8. Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS technology of composition ferroalloys Part I. Metallurgical SHS process. Synthesis of ferrovanadium and ferrochromium nitrides. Izvestiya. Ferrous Metallurgy. 2018;61(5):339—347. (In Russ.). https://doi.org/10.17073/0368-0797-2018-5-339-347
9. Ziatdinov M.Kh., Shatokhin I.M., Leont’ev L.I. SHS technology of composition ferroalloys Part II. Synthesis of ferrosilicon nitride and ferrotitanium boride. Izvestiya. Ferrous Metallurgy. 2018;61(7):527—535. (In Russ.). https://doi.org/10.17073/0368-0797-2018-7-527-535
10. Ziatdinov M.Kh. Metallurgical SHS processes as a route to industrial-scale implementation: An autoreview. Internationsl Journal of Self-Propagating High-Temperature Synthesis. 2018;27(1):1—13. https://doi.org/10.3103/S1061386218010132
11. Санин В.Н., Юхвид В.И., Андреев Д.Е., Алымов М.И. Центробежная СВС-металлургия. Решение практических задач. В кн. Материалообразующие высокоэкзотермические процессы: металлотермия и горение систем термитного типа. Под общ. ред. М.И. Алымова. М.: РАН, 2021. Глава 7. С. 321—372.
12. Yukhvid V.I., Ikornikov D.M., Andreev D.E., Sanin V.N., Alymov M.I., Sachkova N.V., Semenova V.N., Kovalev I.D. Centrifugal SHS-metallurgy of nitrogen steels. Letters on Materials. 2018;8(4(32)):499—503.
13. Юхвид В.И., Горшков В.А., Санин В.Н. Получение новых керамических и композиционных материалов методами СВС-металлургии. В кн. Технологическое горение. Под общ. ред. С.М. Алдошина, М.И. Алымова. М.: ИПХФ РАН, 2018. Глава 14. C. 350—371. https://doi.org/10.31857/S9785907036383000014
14. Sanin V., Andreev D., Ikornikov D., Yukhvid V. Cast intermetallic alloys and composites based on them by combined centrifugal casting — SHS process. Open Journal of Metal. 2013;3(2B):12—24. https://doi.org/10.4236/ojmetal.2013.32A2003
15. Лякишев Н.П., Гасик М.И., Дашевский В.Я. Металлургия ферросплавов. Ч. 1. Металлургия сплавов кремния, марганци и хрома: Учеб. пос. М.: МИСИС, 2006. 117 с.
16. Yukhvid V.I., Andreev D.E., Sanin V.N., Gorshkov V.A., Alymov M.I. Synthesis of cast composite materials by SHS metallurgy methods. Key Engineering Materials. 2017;(746):219—232. https://doi.org/10.4028/www.scientific.net/KEM.746.219
17. Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal SHS metallurgy of cast Co—Cr—Fe—Ni—Mn high-entropy alloys strengthened by precipitates based on Mo and Nb borides and silicides. Physical Mesomechanics. 2021;24(6):692—700. https://doi.org/10.1134/S1029959921060072
18. Sanin V.N., Yukhvid V.I., Andreev D.E., Ikornikov D.M., Levashov E.A., Pogozhev Yu.S. SHS of cast refractory alloys for reprocessing into micro granules used in 3D additive technologies. In: Book of abstracts of XIV International Symposium on Self-Propagating High Temperature Synthesis (SHS-2017) (Tbilisi, Georgia, 25— 28 September 2017). 2017. P. 224—226.
19. Банных О.А., Будберг П.Б., Алисова С.П. Диаграммы состояния двойных и многокомпонентных систем на основе железа. М.: Металлургия, 1986. 440 с.
20. Лякишев Н.П. Диаграммы состояния двойных металлических систем. М.: Машиностроение, 1997. Т. 2. 1023 с.
21. Kocherzhinskii Yu.A., Vasilenko V.I. Fusibility diagrams of the systems Mo—Nb (V, Cr), V—Nb (Cr), and Mo—V— Nb (Cr). Russian Metallurgy (Metally). 1985;(2):186—190.
22. Kocherzhinskii Yu.A., Vasilenko V.I. Fusibility diagram of molybdenum—chromium. Russian Metallurgy (Metally). 1979;(4):205—207.
23. Nagender Naidu S.V., Sriramamurthy A.M., Rama Rao P. The Cr—W (chromium—tungsten) system. Bulletin of Alloy Phase Diagrams. 1984;5(3):289—307.
24. Алисова С.П., Будберг П.Б., Агеев Н.В. Диаграммы состояния металлических систем. М.: ВИНИТИ, 1975. 268 с.
25. Nurse R.W., Welch J.H., Majumdar A.J. The CaO—Al2O3 system in a moisture-free atmosphere. Transactions of the British Ceramic Society. 1965;64:409—418.
26. Nurse R.W., Welch J.H., Majumdar A.J. The 12CaO·7Al2O3 phase in the CaO—Al2O3 system. Transactions of the British Ceramic Society. 1965;64:323—382.
Review
For citations:
Kubanova A.N., Ikornikov D.M., Sanin V.N., Martynov D.A. Production of cast master alloys with high chromium content using centrifugal SHS metallurgy. Izvestiya. Non-Ferrous Metallurgy. 2025;(1):27-40. https://doi.org/10.17073/0021-3438-2025-1-27-40