Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Investigation of gold dissolution in cyanide solutions using cyclic voltammetry methods

https://doi.org/10.17073/0021-3438-2025-1-14-26

Abstract

The study presents the results of gold dissolution in cyanide solutions using the cyclic voltammetry method. A methodology was developed to investigate the mechanism of gold leaching in cyanide solutions by determining the relationship between current and potential under varying cyanide and oxygen concentrations. It is known that as the electrode potential increases, the gold dissolution current rises until the passivation potential is reached, after which it sharply decreases due to the formation of an oxide film, resulting in gold passivation. It was established that the maximum passivation current is achieved at oxygen and sodium cyanide concentrations of 7.5 mg/dm3 and 300– 400 mg/dm3, respectively. Mathematical relationships for the passivation potential and current as functions of sodium cyanide and oxygen concentrations were determined, described by polynomial equations with approximation coefficients R2 > 0.7. When the polarization direction is reversed, the current polarity changes, producing a cathodic curve with a peak at the depassivation potential, corresponding to the dissolution of the passive gold film. The depassivation potential and current show weak dependence on sodium cyanide concentration. The cyclic voltammetric curve terminates at the initial point with the same current and potential values, indicating the complete removal of the oxide film from the gold surface. The oxide film thickness, calculated based on the amount of passed charge, was found to be 0.007 μm. Metallographic studies demonstrated that the film thickness could not be determined by this method. A gold surface diffractogram revealed that the passive film formed after heating to 125 °C has the crystallochemical formula Na0.66Au2.66O4. The study highlights the potential for enhancing gold recovery from refractory ores through electrochemical treatment in alkaline conditions.

About the Authors

A. N. Baranov
Irkutsk National Research Technical University
Russian Federation

Anatoly N. Baranov – Dr. Sci. (Eng.), Prof., Department of metallurgy of non-ferrous metals



V. V. Elshin
Irkutsk National Research Technical University
Russian Federation

Viktor V. Elshin – Dr. Sci. (Eng.), Prof., Head of the Department of automation and control



A. A. Kolodin
Irkutsk National Research Technical University
Russian Federation

Alexey A. Kolodin – Senior Lecturer, Department of automation and control



E. V. Filippova
Federal Service for Environmental, Industrial and Nuclear Supervision
Russian Federation

Elena V. Filippova – Cand. Sci. (Eng.), Associate Prof., Deputy Head of the Department of assessments, licensing and inspections of nuclear fuel cycle facilities



References

1. Leonov S.B., Bubeev P.P., Elshin V.V. Dissolution peculiarities of gold in alkaline oxygen-bearing sodium cyanide solutions. In: Proc. 5th Southern Hemi-Sphere Meeting Technology. Buenos Aires, Argentina, 1997. P. 205.

2. Baranov A.N., Elshin V.V., Kolodin A.A. Electrochemical studies of gold dissolution in cyanide solutions at various oxygen concentrations. Theory and Process Engineering of Metallurgical Production. 2023;(1):11—17. (In Russ.).

3. Elshin V.V., Kolodin A.A. Optimal control of the gold dissolution process in the gold ore grinding cycle. Automation in Industry. 2023;(6):8—13. (In Russ.). https://doi.org/10.25728/avtprom.2023.06.03

4. Александров А.Л., Баранов А.Н. Коррозионные исследования поведения золота в цианистых растворах. В сб.: Переработка природного и техногенного сырья. Иркутск: Изд-во ИРНИТУ, 2017. С. 72—75.

5. Bastidas D.M. Corrosion and protection of metals. Metals. 2020;10(4):458. https://doi.org/10.3390/met10040458

6. Azizi A., Petre C.F., Olsen C., Larachi F. Electrochemical behavior of gold cyanidation in the presence of a sulfiderich industrial ore versus its major constitutive sulfide minerals. Hydrometallurgy. 2010;101:108—119. https://doi.org/10.1016/j.hydromet.2009.12.004

7. Frankenthal R.P., Thompson D.E. The anodic behavior of gold in sulfuric acid solutions. Effect of chloride and electrode potential. Journal of the Electrochemical Society. 1976;123(66):799.

8. Nguyen V.Ch., Astafeva N.A., Balanovsky A.E., Baranov A.N. Study of corrosion resistance of doped surface layer with CuSn—CrxCy composition after plasma hardening. Uprochnyayushchie tekhnologii i pokrytiya. 2021;17(5):215—220. (In Russ.).

9. Rybalka K.V., Beketaeva L.A., Davydov A.D. Estimation of AISI 1016 steel corrosion rate by polarization curves analysis and ohmic resistance measurement. Russian Journal of Electrochemistry. 2021;57(1):19—24. (In Russ.). https://doi.org/10.31857/S0424857021010096

10. Beketaeva L.A., Rybalka K.V., Davydov A.D. Estimation of corrosion rate of cobalt-chromium alloy Starbond-CoS in NaCl solution. Russian Journal of Electrochemistry. 2021;57(5):309—315. (In Russ.). https://doi.org/10.31857/S0424857021040034

11. Liu M., Lao J., Wang H., Su Z., Liu J., Wen L., Yin Z., Luo K., Peng H. Electrochemical determination of tyrosine on glassy carbon electrode modified with graphene composite and gold nanoparticles. Russian Journal of Electrochemistry. 2021;57(1):47—58. (In Russ.). https://doi.org/10.31857/S0424857020110067

12. Strizhko L.S., Bobozoda Sh.K., Novakovskaya A.O., Boboev I.R. Process control and prediction of raw material leaching using a hydroacoustic emitter. Systems. Methods. Technologies. 2014;(4):115—122. (In Russ.).

13. Elshin V.V., Kolodin A.A., Ovsyukov A.E., Malchikhin A.S. Features of cyanide leaching of gold in the grinding cycle. Metallurg. 2013;(7):86—90. (In Russ.).

14. Conway M.H., Gale D.C. Sulfur’s impact on the size of pressure oxidation autoclaves. The Journal of the Minerals, Metals & Materials Society. 1990;42:19—22. https://doi.org/10.1007/BF03221072

15. Mason P.G. Energy requirements for the pressure oxidation of gold-bearing sulfudes. The Journal of the Minerals, Metals & Materials Society. 1990;42(9):15—18.

16. Lavrov A.Yu. The effectiveness rise of developing ore deposits on the basis of innovative geoecological technologies with photo-electrochemical components’ activity of technological systems. Vestnik Zabaikal’skogo Gosudarstvennogo Universiteta. 2013;(2):31—37. (In Russ.).

17. Bellec S., Hodouin D., Bazin C., Khalesi M.R., Duchesne C. Modelling and simulation of gold ore leaching. In: World Gold Conference 2009. The Southern African Institute of Mining and Metallurgy, 2009. Р. 51—59.

18. Nikoloski A.N., Nicol M.J. The electrochemistry of the leaching reactions in the Caron process. II. Cathodic processes. Hydrometallurgy. 2010;(105):54—59.

19. Robertson S., Jeffrey M., Zhang H., Ho E. An introductory electrochemical approach to studying hydrometallurgical reactions. Metallurgical and Materials Transactions B. 2005;36:313—325.

20. Shchadov I.M., Filippova E.V. Prospects for the use of new environmental protection technology in the processing of gold-bearing technogenic formations. Ecology and Industry of Russia. 2017;21(12):24—27. (In Russ.). https://doi.org/10.18412/1816-0395-2017-12-24-27

21. Filippova E.V. New integrated technology for processing industrial wastes which allows to increase ecological safety. Systems. Methods. Technologies. 2016;(3):192—197. (In Russ.). https://doi.org/10.18324/2077-5415-2016-3-192-197

22. Syed S. Recovery of gold from secondary sources. Hydrometallurgy. 2012;115:31—51.

23. Баранов А.Н. Коррозия и защита металлов: Учеб. пос. Иркутск: ИРНИТУ, 2015. 178 с.

24. Справочник химика. 2-е изд. Т. 3. М.: Химия, 1964. 1025 с.

25. Химическая энциклопедия в 5 т. Т. 2. Под ред. И.А. Киуянц. М.: Советская энциклопедия, 1990. 617 с.

26. Takeno Naoto. Atlas of Eh—pH diagrams (Intercomparison of thermodynamic databases): Geological Survey of Japan Open File Report No. 419. Tsukuba, Ibaraki, Japan: National Institute of Advanced Industrial Science and Technology, Research Center for Deep Geological Environments, 2005.

27. Fenge Lin, David Vera Anaya, Shu Gong, Lim Wei Yap, Yan Lu, Zijun Yong, Wenlong Cheng. Gold nanowire sponge electrochemistry for permeable wearable sweat analysis comfortably and wirelessly. ACS Sensors. 2024;9(10):5414—5424. https://doi.org/10.1021/acssensors.4c01635

28. Сидоров Д.С., Баранов А.Н. Интенсификация выщелачивания цветных металлов с применением электрохимической обработки щелочи. В сб.: Перспективы развития технологии переработки углеводородных минеральных ресурсов: Материалы X Всерос. науч.-практ. конференции с междунар. участием. Иркутск: ИРНИТУ, 2020. С. 51—53.


Review

For citations:


Baranov A.N., Elshin V.V., Kolodin A.A., Filippova E.V. Investigation of gold dissolution in cyanide solutions using cyclic voltammetry methods. Izvestiya. Non-Ferrous Metallurgy. 2025;(1):14-26. https://doi.org/10.17073/0021-3438-2025-1-14-26

Views: 109


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)