Effect of annealing on the structure and properties formation of a copper alloy alloyed with palladium and silver
https://doi.org/10.17073/0021-3438-2024-4-66-76
Abstract
A copper alloy with small additions of palladium and silver (Cu–1.5Pd–3Ag (at. %))—which has potential applications as a corrosionresistant conductor of weak electrical signals—was studied using X-ray diffraction analysis, microhardness measurements, specific electrical resistivity, and tensile mechanical properties tests. Samples were examined in several initial states: quenched (from 700 °C) and deformed at room and cryogenic temperatures (with a 90 % reduction in cross-sectional area in both cases). To study the processes of structural reorganization and property evolution, the initial samples were annealed in the temperature range from 150 to 450 °C (in 50 °C increments), followed by cooling in water or air. The duration of the heat treatments ranged from 1 to 48 hours. It was established that annealing the Cu–1.5Pd–3Ag alloy at temperatures below 450 °C leads to the precipitation of silver-based phase particles in the Cu matrix. Annealing of the initially quenched alloy was found to slightly increase its specific electrical resistivity (ρ) from 3.55·10–8 to 3.8·10–8 Ohm·m (after 48 h at 250 °C). It was revealed that alloying copper with 1.5 at. % palladium and 3 at. % silver enhances the strength properties (the yield strength of the alloy reaches 500 MPa) and raises the recrystallization temperature, while the electrical conductivity of the alloy remains around 50 % IACS. The optimal combination of properties (strength, ductility, and electrical conductivity) is observed after annealing the pre-cryodeformed alloy at 250 °C for less than 18 h. Extending the annealing time causes overaging, resulting in softening. The results of this study can be applied in the development of a new high-strength material with reduced electrical resistivity.
Keywords
About the Authors
O. S. NovikovaRussian Federation
Oksana S. Novikova – Cand. Sci. (Phys.-Math.), Senior Research Scientist
18 Kovalevskaya Str., Ekaterinburg 620108
Yu. A. Salamatov
Russian Federation
Yuriy A. Salamatov – Cand. Sci. (Phys.-Math.), Senior Research Scientist
18 Kovalevskaya Str., Ekaterinburg 620108
A. E. Kostina
Russian Federation
Alina E. Kostina – Postgraduate Student, Junior Research Scientist
18 Kovalevskaya Str., Ekaterinburg 620108
A. Yu. Volkov
Russian Federation
Aleksey Yu. Volkov – Dr. Sci. (Eng.), Head of the laboratory
18 Kovalevskaya Str., Ekaterinburg 620108
References
1. Osintsev O.E., Fedorov V.N. Copper and copper alloys. Domestic and foreign brands: Reference book. 2-nd ed., rev. and add. Moscow: Innovatsionnoe mashinostroenie, 2016. 360 p. (In Russ.).
2. Valova-Zakharevskaya E.G., Deryagina I.L., Popova E.N., Khlebova N.E., Pantsyrnyi V.I. Special characteristics of the microstructure of high-strength multifiblamentary Cu—18Nb composites. Diagnostics, Resource and Mechanics of materials and structures. 2018;5:116—126. (In Russ.). https://doi.org/10.17804/2410-9908.2018.5.116-126
3. Chzhigan Ch., Tszyunvey L., Shitsyan L., Yanni S., Yuan M. Mechanisms of high-temperature deformation of the Cu–Be alloy in the high-elastic annealed state. Fizika Metallov i Metallovedenie. 2018;119(1):73—80. (In Russ.). https://doi.org/10.7868/S0015323018010096
4. Loginov P.A., Vorotilo S., Sidorenko D.A., Lopatina Yu.V., Okubaev A., Shvyndina N.V., Levashov E.A. The effect of Ti and TiH2 additives on structure and mechanical properties of copper alloys for diamond cutting tools. Izvestiya. Non-Ferrous Metallurgy. 2020;(3):51—58. (In Russ.). https://doi.org/10.17073/0021-3438-2020-3-51-58
5. Rajarshi Banerjee, Sangita Bose, Arda Genc, Pushan Ayyub. The microstructure and electrical transport properties of immiscible copper-niobium alloy thin films. Journal of Applied Physics. 2008;103(3):033511. https://doi.org/10.1063/1.2836970
6. Loginov Yu.N. Copper and deformable copper alloys: textbook. Ekaterinburg: UGTU–UPI, 2004. 136 p. (In Russ.).
7. Volkov A.Yu., Novikova O.S., Kostina A.E., Antonov B.D. Effect of alloying with palladium on the electrical and mechanical properties of copper. Physics of Metals and Metallography. 2016;117(9):945—954. https://doi.org/10.1134/S0031918X16070176
8. Maki K., Ito Yu., Matsunaga H., Mori H. Solid-solution copper alloys with high strength and high electrical conductivity. Scripta Materialia. 2013;68:778—780. https://doi.org/10.1016/j.scriptamat.2012.12.0217
9. Gorsee S., Ouvrard B., Goune M., Poulon-Quintin A. Microstructural design of new conductivity — high strength Cu-based alloy. Journal of Alloys and Compounds. 2015;633:42—47. https://doi.org/10.1016/j.jallcom.2015.01.234
10. Ohta M., Shiraishi T., Hisatsune K., Yamane M. Agehardening of dental Ag—Pd—Cu—Au alloys. Journal of Dental Research. 1980;59(11):1966—71. https://doi.org/10.1177/00220345800590110701
11. Iwamoto C., Adachi N., Watanabe F., Koitabash R. Microstructure evolution in Cu—Pd—Ag alloy wires during heat treatment. Metallurgical and Materials Transactions A. 2018;49:4947—4955. https://doi.org/10.1007/s11661-018-4800-3
12. Novikova O.S., Kostina A.E., Salamatov Yu.A., Zgibnev D.A., Volkov A.Yu. The influence of deformation at cryogenic or room temperature followed by annealing on the structure and properties of copper and its Cu—3Pd and Cu—3Pd—3Ag (at. %) alloys. Frontier Materials & Technologies. 2023;(2):77—87. (In Russ.). https://doi.org/10.18323/2782-4039-2023-2-64-6
13. Volkov A.Yu., Novikova O.S., Antonov B.D. The kinetics of ordering in an equiatomic CuPd alloy: A resistometric study. Journal of Alloys and Compounds. 2013;581: 625—631. http://dx.doi.org/10.1016/j.jallcom.2013.07.132
14. Gong X., Wei B., Teng J., Wang Z., Li Yu.Regulating the oxidation resistance of Cu—5Ag alloy by heat treatment. Corrosion Science. 2021;190: 109686. https://doi.org/10.1016/j.corsci.2021.109686
15. Straumal B.B., Kilmametov A.R., Baretzkyet B., Kogtenkova O.A., Straumal P.B., Litynska-Dobrzynska L., Chulist R., Korneva A., Zieva P. High pressure torsion of Cu—Ag and Cu—Sn alloys: Limits for solubility and dissolution. Acta Materialia. 2020;195:184—198. https://doi.org/10.1016/j.actamat.2020.05.055
16. Freudenberger J., Kauffmann A., Klaub H., Marr T., Nenkov K., Subramanya S.V., Schultz L. Studies on recrystallization of single-phase copper alloys by resistance measurements. Acta Materialia. 2010;58:2324—2329. https://doi.org/10.1016/j.actamat.2009.12.018
17. Shakhova I., Sakai Y., Belyakov A., Kaibyshev R. Microstructure evolution in a Cu—Ag alloy during large strain deformation and annealing. Materials Science Forum. 2011;667—669:493—498. https://doi.org/10.4028/www.scientific.net/MSF.667-669.493
18. Kada S., Vadlamani S.S., Kauffmann A., Hegedus Z., Gubicza J., Lechner M., Freudenberger J., Wilde G. High strength and ductile ultra-grained Cu—Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Materialia. 2013;61:228—238. https://doi.org/10.1016/j.actamat.2012.09.053
19. Wang H., Zhang Z., Zhang H., Hu Z., Li S., Cheng X. Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Materials Science and Engineering A. 2017;696:80—89. https://doi.org/10.1016/j.msea.2017.04.055
20. Fine structure and properties of solid solutions: Collection of articles. Eds. V. Kester, I.Ya. Bokshitsky, Ya.P. Selissky. Moscow: Metallurgiya, 1968. 223 p. (In Russ.).
21. Islamgaliev R.K., Nesterov K.M., Valiev R.Z. Structure, strength, and electric conductivity of a Cu—Cr copperbased alloy subjected to severe plastic deformation. Physics of Metals and Metallography. 2015;116(2):209—218. https://doi.org/10.1134/S0031918X14090063
22. Babikov V.V. Phase function method in quantum mechanics. 2-nd ed., rev. and add. Moscow: Nauka, 1976. 287 p. (In Russ.).
23. Kon’kova T.N., Mironov S.Y., Danilenko V.N., Korznikov A.V. Effect of low-temperature rolling on the structure of copper. Physics of Metals and Metallography. 2010;110(4):318—330. https://doi.org/10.1134/S0031918X10100029
24. Guo S., Liu S., Liu J., Gao Z., Liu Z. Investigation on strength, ductility and electrical conductivity of Cu—4Ag alloy prepared by cryorolling and subsequent annealing process. Journal of Materials Engineering and Performance. 2019;28:6809—6815. https://doi.org/10.1007/s11665-019-04448-7
25. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, X-ray diffraction and electron microscopy. Moscow: Metallurgiya, 1982. 632 p. (In Russ.).
26. Syutkin N.N., Ivchenko V.A., Telegin A.B., Volkov A.Yu. Field emission microscopy of the early stages of ordering and decomposition of a palladium—copper—silver alloy. Fizika Metallov i Metallovedenie. 1986;62(5):965—969. (In Russ.).
27. Honeycomb R. Plastic deformation of metals. Moscow: Mir, 1972. 408 p. (In Russ.).
28. Toschi S., Balducci E., Ceschini L., Mørtsell E., Morri A., Di Sabatino M. Effect of Zr addition on overaging and tensile behavior of 2618 aluminum alloy. Metals. 2019;9:130. https://doi.org/10.3390/met9020130
Review
For citations:
Novikova O.S., Salamatov Yu.A., Kostina A.E., Volkov A.Yu. Effect of annealing on the structure and properties formation of a copper alloy alloyed with palladium and silver. Izvestiya. Non-Ferrous Metallurgy. 2024;(4):66-76. https://doi.org/10.17073/0021-3438-2024-4-66-76