Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of annealing on the structure and properties formation of a copper alloy alloyed with palladium and silver

https://doi.org/10.17073/0021-3438-2024-4-66-76

Abstract

A copper alloy with small additions of palladium and silver (Cu–1.5Pd–3Ag (at. %))—which has potential applications as a corrosionresistant conductor of weak electrical signals—was studied using X-ray diffraction analysis, microhardness measurements, specific electrical resistivity, and tensile mechanical properties tests. Samples were examined in several initial states: quenched (from 700 °C) and deformed at room and cryogenic temperatures (with a 90 % reduction in cross-sectional area in both cases). To study the processes of structural reorganization and property evolution, the initial samples were annealed in the temperature range from 150 to 450 °C (in 50 °C increments), followed by cooling in water or air. The duration of the heat treatments ranged from 1 to 48 hours. It was established that annealing the Cu–1.5Pd–3Ag alloy at temperatures below 450 °C leads to the precipitation of silver-based phase particles in the Cu matrix. Annealing of the initially quenched alloy was found to slightly increase its specific electrical resistivity (ρ) from 3.55·10–8 to 3.8·10–8 Ohm·m (after 48 h at 250 °C). It was revealed that alloying copper with 1.5 at. % palladium and 3 at. % silver enhances the strength properties (the yield strength of the alloy reaches 500 MPa) and raises the recrystallization temperature, while the electrical conductivity of the alloy remains around 50 % IACS. The optimal combination of properties (strength, ductility, and electrical conductivity) is observed after annealing the pre-cryodeformed alloy at 250 °C for less than 18 h. Extending the annealing time causes overaging, resulting in softening. The results of this study can be applied in the development of a new high-strength material with reduced electrical resistivity.

About the Authors

O. S. Novikova
M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences
Russian Federation

Oksana S. Novikova – Cand. Sci. (Phys.-Math.), Senior Research Scientist

18 Kovalevskaya Str., Ekaterinburg 620108



Yu. A. Salamatov
M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences
Russian Federation

Yuriy A. Salamatov – Cand. Sci. (Phys.-Math.), Senior Research Scientist

18 Kovalevskaya Str., Ekaterinburg 620108



A. E. Kostina
M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences
Russian Federation

Alina E. Kostina – Postgraduate Student, Junior Research Scientist

18 Kovalevskaya Str., Ekaterinburg 620108



A. Yu. Volkov
M.N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences
Russian Federation

Aleksey Yu. Volkov – Dr. Sci. (Eng.), Head of the laboratory

18 Kovalevskaya Str., Ekaterinburg 620108



References

1. Osintsev O.E., Fedorov V.N. Copper and copper alloys. Domestic and foreign brands: Reference book. 2-nd ed., rev. and add. Moscow: Innovatsionnoe mashinostroenie, 2016. 360 p. (In Russ.).

2. Valova-Zakharevskaya E.G., Deryagina I.L., Popova E.N., Khlebova N.E., Pantsyrnyi V.I. Special characteristics of the microstructure of high-strength multifiblamentary Cu—18Nb composites. Diagnostics, Resource and Mechanics of materials and structures. 2018;5:116—126. (In Russ.). https://doi.org/10.17804/2410-9908.2018.5.116-126

3. Chzhigan Ch., Tszyunvey L., Shitsyan L., Yanni S., Yuan M. Mechanisms of high-temperature deformation of the Cu–Be alloy in the high-elastic annealed state. Fizika Metallov i Metallovedenie. 2018;119(1):73—80. (In Russ.). https://doi.org/10.7868/S0015323018010096

4. Loginov P.A., Vorotilo S., Sidorenko D.A., Lopatina Yu.V., Okubaev A., Shvyndina N.V., Levashov E.A. The effect of Ti and TiH2 additives on structure and mechanical properties of copper alloys for diamond cutting tools. Izvestiya. Non-Ferrous Metallurgy. 2020;(3):51—58. (In Russ.). https://doi.org/10.17073/0021-3438-2020-3-51-58

5. Rajarshi Banerjee, Sangita Bose, Arda Genc, Pushan Ayyub. The microstructure and electrical transport properties of immiscible copper-niobium alloy thin films. Journal of Applied Physics. 2008;103(3):033511. https://doi.org/10.1063/1.2836970

6. Loginov Yu.N. Copper and deformable copper alloys: textbook. Ekaterinburg: UGTU–UPI, 2004. 136 p. (In Russ.).

7. Volkov A.Yu., Novikova O.S., Kostina A.E., Antonov B.D. Effect of alloying with palladium on the electrical and mechanical properties of copper. Physics of Metals and Metallography. 2016;117(9):945—954. https://doi.org/10.1134/S0031918X16070176

8. Maki K., Ito Yu., Matsunaga H., Mori H. Solid-solution copper alloys with high strength and high electrical conductivity. Scripta Materialia. 2013;68:778—780. https://doi.org/10.1016/j.scriptamat.2012.12.0217

9. Gorsee S., Ouvrard B., Goune M., Poulon-Quintin A. Microstructural design of new conductivity — high strength Cu-based alloy. Journal of Alloys and Compounds. 2015;633:42—47. https://doi.org/10.1016/j.jallcom.2015.01.234

10. Ohta M., Shiraishi T., Hisatsune K., Yamane M. Agehardening of dental Ag—Pd—Cu—Au alloys. Journal of Dental Research. 1980;59(11):1966—71. https://doi.org/10.1177/00220345800590110701

11. Iwamoto C., Adachi N., Watanabe F., Koitabash R. Microstructure evolution in Cu—Pd—Ag alloy wires during heat treatment. Metallurgical and Materials Transactions A. 2018;49:4947—4955. https://doi.org/10.1007/s11661-018-4800-3

12. Novikova O.S., Kostina A.E., Salamatov Yu.A., Zgibnev D.A., Volkov A.Yu. The influence of deformation at cryogenic or room temperature followed by annealing on the structure and properties of copper and its Cu—3Pd and Cu—3Pd—3Ag (at. %) alloys. Frontier Materials & Technologies. 2023;(2):77—87. (In Russ.). https://doi.org/10.18323/2782-4039-2023-2-64-6

13. Volkov A.Yu., Novikova O.S., Antonov B.D. The kinetics of ordering in an equiatomic CuPd alloy: A resistometric study. Journal of Alloys and Compounds. 2013;581: 625—631. http://dx.doi.org/10.1016/j.jallcom.2013.07.132

14. Gong X., Wei B., Teng J., Wang Z., Li Yu.Regulating the oxidation resistance of Cu—5Ag alloy by heat treatment. Corrosion Science. 2021;190: 109686. https://doi.org/10.1016/j.corsci.2021.109686

15. Straumal B.B., Kilmametov A.R., Baretzkyet B., Kogtenkova O.A., Straumal P.B., Litynska-Dobrzynska L., Chulist R., Korneva A., Zieva P. High pressure torsion of Cu—Ag and Cu—Sn alloys: Limits for solubility and dissolution. Acta Materialia. 2020;195:184—198. https://doi.org/10.1016/j.actamat.2020.05.055

16. Freudenberger J., Kauffmann A., Klaub H., Marr T., Nenkov K., Subramanya S.V., Schultz L. Studies on recrystallization of single-phase copper alloys by resistance measurements. Acta Materialia. 2010;58:2324—2329. https://doi.org/10.1016/j.actamat.2009.12.018

17. Shakhova I., Sakai Y., Belyakov A., Kaibyshev R. Microstructure evolution in a Cu—Ag alloy during large strain deformation and annealing. Materials Science Forum. 2011;667—669:493—498. https://doi.org/10.4028/www.scientific.net/MSF.667-669.493

18. Kada S., Vadlamani S.S., Kauffmann A., Hegedus Z., Gubicza J., Lechner M., Freudenberger J., Wilde G. High strength and ductile ultra-grained Cu—Ag alloy through bimodal grain size, dislocation density and solute distribution. Acta Materialia. 2013;61:228—238. https://doi.org/10.1016/j.actamat.2012.09.053

19. Wang H., Zhang Z., Zhang H., Hu Z., Li S., Cheng X. Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Materials Science and Engineering A. 2017;696:80—89. https://doi.org/10.1016/j.msea.2017.04.055

20. Fine structure and properties of solid solutions: Collection of articles. Eds. V. Kester, I.Ya. Bokshitsky, Ya.P. Selissky. Moscow: Metallurgiya, 1968. 223 p. (In Russ.).

21. Islamgaliev R.K., Nesterov K.M., Valiev R.Z. Structure, strength, and electric conductivity of a Cu—Cr copperbased alloy subjected to severe plastic deformation. Physics of Metals and Metallography. 2015;116(2):209—218. https://doi.org/10.1134/S0031918X14090063

22. Babikov V.V. Phase function method in quantum mechanics. 2-nd ed., rev. and add. Moscow: Nauka, 1976. 287 p. (In Russ.).

23. Kon’kova T.N., Mironov S.Y., Danilenko V.N., Korznikov A.V. Effect of low-temperature rolling on the structure of copper. Physics of Metals and Metallography. 2010;110(4):318—330. https://doi.org/10.1134/S0031918X10100029

24. Guo S., Liu S., Liu J., Gao Z., Liu Z. Investigation on strength, ductility and electrical conductivity of Cu—4Ag alloy prepared by cryorolling and subsequent annealing process. Journal of Materials Engineering and Performance. 2019;28:6809—6815. https://doi.org/10.1007/s11665-019-04448-7

25. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, X-ray diffraction and electron microscopy. Moscow: Metallurgiya, 1982. 632 p. (In Russ.).

26. Syutkin N.N., Ivchenko V.A., Telegin A.B., Volkov A.Yu. Field emission microscopy of the early stages of ordering and decomposition of a palladium—copper—silver alloy. Fizika Metallov i Metallovedenie. 1986;62(5):965—969. (In Russ.).

27. Honeycomb R. Plastic deformation of metals. Moscow: Mir, 1972. 408 p. (In Russ.).

28. Toschi S., Balducci E., Ceschini L., Mørtsell E., Morri A., Di Sabatino M. Effect of Zr addition on overaging and tensile behavior of 2618 aluminum alloy. Metals. 2019;9:130. https://doi.org/10.3390/met9020130


Review

For citations:


Novikova O.S., Salamatov Yu.A., Kostina A.E., Volkov A.Yu. Effect of annealing on the structure and properties formation of a copper alloy alloyed with palladium and silver. Izvestiya. Non-Ferrous Metallurgy. 2024;(4):66-76. https://doi.org/10.17073/0021-3438-2024-4-66-76

Views: 154


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)