Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Processing of chalcopyrite concentrate by sulfating roasting

https://doi.org/10.17073/0021-3438-2024-4-33-42

Abstract

Chalcopyrite (CuFeS2) is one of the primary minerals processed on an industrial scale for copper production and often dominates copper concentrates sent for pyrometallurgical processing. This study demonstrates the efficient and selective extraction of copper from chalcopyrite concentrate through sulfating roasting, sulfuric acid leaching, and solvent extraction. At a roasting temperature of 700 °C for 1.5 h, chalcopyrite fully decomposes into hematite (Fe2O3) and chalcanthite (CuSO4). Leaching the calcine with a 0.02 M sulfuric acid solution transfers most of the copper to the aqueous phase, while iron concentrates in the solid residue. Additionally, precious metals concentrate in the residue after leaching of the calcine, with the following content in g/t: Pd – 41.61, Pt – 5.65, Ag – 96.22, Au – 4.81. The removal of iron from the leach solution using solvent extraction with di-2-ethylhexyl phosphoric acid was highly effective: with a 25 % extractant solution and an organicto-aqueous ratio of 1:1 over two stages, the iron concentration in the aqueous phase dropped from 3.05 to 0.01 g/dm3, and with an organic-toaqueous ratio of 1:2 over four stages, it decreased to 0.006 g/dm3. After iron purification and solution evaporation, copper sulfate was obtained with the following composition (%): CuSO4·5H2O – 99.84 (equivalent to 25.42 % copper), Ni – 0.014, Al – 0.007, Fe – 0.0003, As – 0.0002.

About the Authors

A. Yu. Sokolov
Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences
Russian Federation

Artem Yu. Sokolov – Cand. Sci. (Eng.), Junior Researcher

26a Akademgorodok Str., Apatity 184209



A. G. Kasikov
Tananaev Institute of Chemistry of the Kola Science Centre of the Russian Academy of Sciences
Russian Federation

Alexandr G. Kasikov – Cand. Sci. (Chem.), Leading Researcher

26a Akademgorodok Str., Apatity 184209



References

1. Faris N., Rama R., Chena M., Tardio J., Pownceby M.I., Jones L.A., McMaster S., Webster N.A.S., Bhargava S. The effect of thermal pre-treatment on the dissolution of chalcopyrite (CuFeS2) in sulfuric acid media. Hydrometallurgy. 2017;169: 68—78. https://doi.org/10.1016/j.hydromet.2016.12.006

2. Medvedev A.S., So Tu, Khamkhash A., Gosteeva N.V., Ptitsyn A.M. Option for processing copper sulfide concentrate using a combined method (For discussion). Tsvetnye Metally. 2010;(1):33—36. (In Russ.).

3. Ding Z., Yang C., Zhang H., Mei J., Wang J., Yang S. New utilizations of natural CuFeS2 as the raw material of Cu smelting for recovering Hg0 from Cu smelting flue gas. Fuel. 2023;34:126997. https://doi.org/10.1016/j.fuel.2022.126997

4. Khamkhash A., Medvedev A.S., Krylova L.N. Changes in the mineral phases during the processing of a copper sulfide concentrate. Izvestiya. Non-Ferrous Metallurgy. 2007;(1):35—40. (In Russ.).

5. Vasilieva A.A., Boduen A.Ya., Vasiliev R.E. The feasibility of hydrometallurgical methods for enhancing the processing of copper concentrates. iPolytech Journal. 2022;26(2):320—335. (In Russ.). https://doi.org/10.21285/1814-3520-2022-2-320-335

6. Turkmen Y., Kaya E. Leaching of chalcopyrite concentrate in sulphuric acid with the aid of mechanical activation and microwave energy. Asian Journal of Chemistry. 2010;22(10):8107—8116.

7. Neira A., Pizarro D., Quezada V., Velásquez-Yévenes L. Pretreatment of copper sulphide ores prior to heap leaching: A review. Metals. 2021;11:1067. https://doi.org/10.3390/met11071067

8. Olubambi P.A., Potgieter J.H. Investigations on the mechanisms of sulfuric acid leaching of chalcopyrite in the presence of hydrogen peroxide. Mineral Processing and Extractive Metallurgy Review: An International Journal. 2009;30:327—345. https://doi.org/10.1080/08827500902958191

9. Ter-Organesyan A.K., Netrusov A.O., Milman B.M., Vasiliev R.E. Complex hydrometallurgical processing of high-arsenic copper concentrates containing noble metals. In: Proceedings XXIII International Chernyaev Conference in chemistry, analytics and technology of platinum metals (Novosibirsk, 3–7 October 2022). Novosibirsk: IIC SB RAS, 2022. P. 92. (In Russ.). https://doi.org/10.26902/Chern-2022-068

10. Wang J., Faraji F., Ghaherman A. Evaluation of ozone as an efficient and sustainable reagent for chalcopyrite leaching: Process optimization and oxidative mechanism. Journal of Industrial and Engineering Chemistry. 2021;104:333—344. https://doi.org/10.1016/j.jiec.2021.08.036

11. Vafaeian S., Ahmadian M., Rezaei B. Sulphuric acid leaching of mechanically activated copper sulphidic concentrate. Minerals Engineering. 2011;24:1713—1716. https://doi.org/10.1016/j.mineng.2011.09.010

12. Zaitsev P.V., Shneerson Ya.M. Autoclave processes for treatment copper-containing raw materials. Tsvetnye Metally. 2016;(1):26—31. (In Russ.). https://doi.org/10.17580/tsm.2016.01.04

13. Meretukov M.A., Strukov K.I. Modern hydrometallurgical methods for processing gold-copper and coppergold ores. Foreign experience. Tsvetnye Metally. 2023;(1): 21—37. (In Russ.). https://doi.org/10.17580/tsm.2023.01.03

14. Nasirov U.F., Ochilov Sh.A., Umirzakov A.A., Turdikulova G.I., Botirov E.A. Bacterial heap leaching method for processing low-grade primary copper sulfide ore. Journal of Advanced Research and Stability. 2022;Special Issue:259—264. (In Russ.).

15. Yanishevskya E.S., Goryachev A.A. Bioleaching of major sulfide minerals of copper-nickel ores: A review. In: Proceedings of Fersman Scientific Session of the GI KSC RAS. Apatity: Kola Sci. Center RAS, 2019;(16):637–642. (In Russ.). https://doi.org/10.31241/FNS.2019.16.131

16. Sargsyan L.E., Oganesyan A.M. Activated sulfatizing roasting of chalcopyrite concentrate for sulfuric acid leaching. Izvestiya. Non-Ferrous Metallurgy. 2010;(5):11—13. (In Russ.).

17. Rogozhnikov D.A., Karimov K.A., Dizer O.A., Mamyachenkov S.V., Naboichenko S.S. Complex processing of polymetallic sulfide industrial products of non-ferrous metallurgy enterprises. Ekaterinburg: UMTs UPI, 2022. 142 p. (In Russ.).

18. Bumazhnov F.T. Study of the physico-chemical laws of sulfatizing roasting. Zapiski Gornogo Instituta. 1966;46(3):47—57. (In Russ.).

19. Khudyakov I.F., Tikhonov A.I., Deev V.I., Naboichenko S.S. Metallurgy of copper, nickel and cobalt. T. 1: Metallurgy of copper. Moscow: Metallurgiya, 1977. 295 p. (In Russ.).

20. Vanyukov A.V., Utkin N.I. Complex processing of copper and nickel raw materials. Chelyabinsk: Metallurgiya, 1988. 432 p. (In Russ.).

21. Atesoglu G., Atilgan I. Effect of roasting temperature on the leaching of chalcopyrite concentrate in sulphuric acid. Mining, Metallurgy & Exploration. 2022;39:2199—2208. https://doi.org/10.1007/s42461-022-00669-y

22. Zhunusova G.Zh., Altaibaev B.T., Kalyanova O.A., Serkebaeva S.K., Sydykanov M.M. Hydrolytic purification of sulfate solutions from impurities of iron, arsenic, antimony, aluminum and silicon. Prioritetnye nauchnye napravleniya: ot teorii k praktike. 2013;(8):123—129. (In Russ.).

23. Sokolov A.Yu., Kasikov A.G., Bagrova E.G. Solvent extraction purification of sulfuric acid solutions from iron with di-2-ethylhexyl phosphoric acid. In: Proceedings of International Conference “Innovative processes of complex treatment of natural and man- made mineral raw materials” (Plaksinsky Readings) (Apatity, 21–26 September 2020). Apatity: Publ. KSC RAS, 2020. P. 270–272. (In Russ.).

24. Corrae M.M.J., Silvas F.P.C., Aliprandini P., de Moraes V.T., Dreisinger D., Espinosa D.C.R. Separation of copper from a leaching solution of printed circuit boards by using solvent extraction with D2EHPA. Brazilian Journal of Chemical Engineering. 2018;35(3): 919—930. https://doi.org/10.1590/0104-6632.20180353s20170144

25. Hirato T., Wu Z.-C., Yamada Y., Majima H. Improvement of the stripping characteristics of Fe(III) utilizing a mixture of di(2-ethylhexyl) phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy. 1992;28:81—93. https://doi.org/10.1016/0304-386X(92)90066-9

26. Singh D.K., Mishra S.L., Singh H. Stripping of iron (III) from the D2EHPA + TBP extract produced during uranium recovery from phosphoric acid by oxalic acid. Hydrometallurgy. 2006;81:214—218. https://doi.org/10.1016/j.hydromet.2005.12.006

27. Devi N.B., Nayak B. Liquid-liquid extraction and separation of copper (II) and nickel (II) using LIX®984N. Journal of the Southern African Institute of Mining and Metallurgy. 2008;114(11):937—943.


Review

For citations:


Sokolov A.Yu., Kasikov A.G. Processing of chalcopyrite concentrate by sulfating roasting. Izvestiya. Non-Ferrous Metallurgy. 2024;(4):33-42. https://doi.org/10.17073/0021-3438-2024-4-33-42

Views: 133


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)