Effect of ultrasonic treatment on tin recovery from decommissioned displays in sulphuric, hydrochloric, and methanesulphonic acid solutions
https://doi.org/10.17073/0021-3438-2024-4-22-32
Abstract
The study investigates the physicochemical patterns of tin leaching from the surface of glass substrates from decommissioned displays in hydrochloric, sulphuric, and methanesulphonic acids. The effects of acid concentration (0.1–1.0 N), duration (10–60 min), temperature (298–353 K), and ultrasonic treatment intensity (UST) (120–300 W/cm2) on leaching performance were evaluated. It was demonstrated that ultrasonic treatment positively impacts sulphuric acid leaching of tin, increasing its recovery by 14–16 %. However, during leaching in hydrochloric and methanesulphonic acid solutions, UST led to a reduction in tin recovery to 28 % and 1.7 %, respectively, due to acid decomposition under ultrasound. The partial reaction orders for tin leaching in HCl, H2SO4, and CH3SO3H were determined to be 0.8, 1.4, and 1.1, respectively, and changed to 1.5, 1.1, and 0.3 under ultrasound for the corresponding acids. An increase in temperature from 298 K to 333 K significantly improved tin recovery in sulphuric and hydrochloric acids. However, raising the temperature to 353 K led to a decrease in tin ion concentration after 10–20 min, likely due to tin hydrolysis and precipitation. The calculated apparent activation energies of tin oxide dissolution in HCl solutions were 40.4 kJ/mol without UST and 22.9 kJ/mol with UST. For H2SO4, the apparent activation energy was 4.0 kJ/mol, increasing to 29.0 kJ/mol under ultrasonic treatment. Therefore, the study showed that tin leaching from glass substrates of decommissioned displays proceeds in a kinetic regime when HCl is used and in a diffusion regime in H2SO4 solutions, with ultrasonic treatment facilitating the transition to a mixed regime.
About the Authors
E. B. KolmachikhinaRussian Federation
Elvira B. Kolmachikhina – Cand. Sci. (Eng.), Researcher of the Laboratory of advanced technologies for complex processing of mineral and technogenic raw materials of nonferrous and ferrous metals
19 Mira Str., Ekaterinburg 620002
O. B. Kolmachikhina
Russian Federation
Olga B. Kolmachikhina – Cand. Sci. (Eng.), Associated Professor of the Department of non-ferrous metallurgy
19 Mira Str., Ekaterinburg 620002
Ya. A. Yankina
Russian Federation
Yana A. Yankina – Student of the Department of non-ferrous metallurgy
19 Mira Str., Ekaterinburg 620002
Z. M. Golibzoda
Russian Federation
Zamira M. Golibzoda – Student of the Department of nonferrous metallurgy
19 Mira Str., Ekaterinburg 620002
P. A. Brizhevataya
Russian Federation
Polina A. Brizhevataya – Student of the Department of nonferrous metallurgy
19 Mira Str., Ekaterinburg 620002
D. S. Sedel’nikova
Russian Federation
Daria S. Sedel’nikova – Student of the Department of nonferrous metallurgy
19 Mira Str., Ekaterinburg 620002
R. E. Khabibulina
Russian Federation
Raisa E. Khabibulina – Assistant of the Department of nonferrous metallurgy
19 Mira Str., Ekaterinburg 620002
References
1. Pasquarelli R.M., Ginley D.S., O’Hayre R. Solution processing of transparent conductors: from flask to film. Chemical Society Reviews. 2011;40(11):5406—5441. https://doi.org/10.1039/c1cs15065k
2. Illés I.B., Nagy S., Kékesi T. The recycling of pure metallic indium from waste LCD screens by a combined hydro-electrometallurgical method. Hydrometallurgy. 2022;213:105945. https://doi.org/10.1016/j.hydromet.2022.105945
3. Wang H.Y. A study of the effects of LCD glass sand on the properties of concrete. Waste Management. 2009;29(1):335—341. https://doi.org/10.1016/j.wasman.2008.03.005
4. Lee C.H., Popuri S.R., Peng Y.H. Analysis of indium and tin in different scrap liquid crystal display glass by heavy metal digestion method. Journal of Sustainable Metallurgy. 2019;5(4):617—626. https://doi.org/10.1007/s40831-019-00254-6
5. Mineral commodity summaries 2022. URL: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdf (accessed: 12.02.2024).
6. Mineral commodity summaries 2024. URL: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024.pdf (accessed: 12.02.2024).
7. Savvilotidou V., Kousaiti A., Batinic B., Vaccari M., Kastanaki E., Karagianni K., Gidarakos E. Evaluation and comparison of pre-treatment techniques for recovering indium from discarded liquid crystal displays. Waste Management. 2019;87:51—61. https://doi.org/10.1016/j.wasman.2019.01.029
8. Li J., Gao S., Duan H., Liu L. Recovery of valuable materials from waste liquid crystal display panel. Waste Management. 2009;29(7):2033—2039. https://doi.org/10.1016/j.wasman.2008.12.013
9. Lahtela V., Virolainen S., Uwaoma A., Kallioinen M., Kärki T., Sainio T. Novel mechanical pre-treatment methods for effective indium recovery from end-of-life liquid-crystal display panels. Journal of Cleaner Production. 2019;230:580—591. https://doi.org/10.1016/j.jclepro.2019.05.163
10. Wang S., He Y., Yang J., Feng Y. Enrichment of indium tin oxide from colour filter glass in waste liquid crystal display panels through flotation. Journal of Cleaner Production. 2018;189:464—471. https://doi.org/10.1016/j.jclepro.2018.04.096
11. Zheng K., Benedetti M.F., van Hullebusch E.D. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) — A review. Journal of Environmental Management. 2023;347:119043. https://doi.org/10.1016/j.jenvman.2023.119043
12. Wang Y., Wang R., Zhang C., Wang J. Full components recovery of organic matter and indium from discarded liquid crystal display panels. Journal of Cleaner Production. 2021;299:126862. https://doi.org/10.1016/j.jclepro.2021.126862
13. Zhang L., Wu B., Chen Y., Xu Z. Energy and valuable resource recovery from waste liquid crystal display panels by an environment-friendly technological process: pyrolysis of liquid crystals and preparation of indium product. Journal of Cleaner Production. 2017;162:141—152. https://doi.org/10.1016/j.jclepro.2017.06.031
14. Park K.S., Sato W., Grause G., Kameda T., Yoshioka T. Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochimica Acta. 2009;493(1-2):105—108. https://doi.org/10.1016/j.tca.2009.03.003
15. Assefi M., Maroufi S., Nekouei R.K., Sahajwalla V. Selective recovery of indium from scrap LCD panels using macroporous resins. Journal of Cleaner Production. 2018;180:814—822. https://doi.org/10.1016/j.jclepro.2018.01.165
16. Schuster J., Ebin B. Investigation of indium and other valuable metals leaching from unground waste LCD screens by organic and inorganic acid leaching. Separation and Purification Technology. 2021;279:119659. https://doi.org/10.1016/j.seppur.2021.119659
17. Qin J., Ning S., Zeng J., He Z., Hu F., Li Y., Fujita T., Wei Y. Leaching behavior and process optimization of tin recovery from waste liquid crystal display under mechanical activation. Journal of Cleaner Production. 2023;399:136640. https://doi.org/10.1016/j.jclepro.2023.136640
18. Houssaine Moutiy E, Tran L.H., Mueller K.K., Coudert L., Blais J.F. Optimized indium solubilization from LCD panels using H2SO4 leaching. Waste Management. 2020;114:53—61. https://doi.org/10.1016/j.wasman.2020.07.002
19. Kato T., Igarashi S., Ishiwatari Y., Furukawa M., Yamaguchi H. Separation and concentration of indium from a liquid crystal display via homogeneous liquid—liquid extraction. Hydrometallurgy. 2013;137:148—155. https://doi.org/10.1016/j.hydromet.2013.06.004
20. Guthrie J.P. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Canadian Journal of Chemistry. 1978;56(17): 2342—2354. https://doi.org/10.1139/v78-385
21. Levanov A.V., Isaikina O.Y., Gurbanova U.D., Lunin V.V. Dissociation constants of perchloric and sulfuric acids in aqueous solution. The Journal of Physical Chemistry B. 2018;122(23):6277—6286. https://doi.org/10.1021/acs.jpcb.8b01947
22. Zinchenko A.V., Izotova S.G., Rumyantsev A.V. The new handbook of the chemist and technologist. Chemical equilibrium. Properties of solutions. Saint Petersburg: ANO NPO “Professional”, 2004. 998 p. (In Russ.).
23. Vyas S., Ting Y.P. A review of the application of ultrasound in bioleaching and insights from sonication in (bio) chemical processes. Resources. 2017;7(1):3. https://doi.org/10.3390/resources7010003
24. Bang J.H., Suslick K.S. Applications of ultrasound to the synthesis of nanostructured materials. Advanced Materials. 2010;22(10):1039—1059. https://doi.org/10.1002/adma.200904093
25. He C., Liu L., Fang Z., Li J., Guo J., Wei J. Formation and characterization of silver nanoparticles in aqueous solution via ultrasonic irradiation. Ultrasonics Sonochemistry. 2014;21(2):542—548. https://doi.org/10.1016/j.ultsonch.2013.09.003
26. Gungoren C., Ozkan S.G., Ozdemir O. Use of ultrasound in physical and chemical mineral processing operations. In: Advances in minerals research. Advances in material research and technology. Ed. S.R. Ikhmayies. Cham: Springer, 2024. P. 25—54.
27. Yuan Y., Yu X., Shen Q., Zhao Q., Li Y., Wu T. A novel approach for ultrasonic assisted organic acid leaching of waste lithium-containing aluminum electrolyte and recovery of lithium. Chemical Engineering and Processing — Process Intensification. 2023;192:109508. https://doi.org/10.1016/j.cep.2023.109508
28. Delmas H., Barthe L., Cleary R. Ultrasonic mixing, homogenization, and emulsification in food processing and other applications. In: Power ultrasonics. Eds. J.A. Gallego-Juárez, K.F. Graff, M. Lucas. Amsterdam: Elsevier B.V., 2023. P. 665—685.
29. Rahimi M.R., Mosleh S. Intensification of sorption processes. Amsterdam: Elsevier B.V., 2022. 258 p.
30. Zhang K., Li B., Wu Y., Wang W., Li R., Zhang Y.N., Zuo T. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. Waste Management. 2017;64:236—243. https://doi.org/10.1016/j.wasman.2017.03.031
31. Merouani S., Hamdaoui O., Rezgui Y., Guemini M. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles — Theoretical study. Ultrasonics Sonochemistry. 2013;20(3):815—819. https://doi.org/10.1016/j.ultsonch.2012.10.015
32. Bu X., Tong Z., Bilal M., Ren X., Ni M., Ni C., Xie G. Effect of ultrasound power on HCl leaching kinetics of impurity removal of aphanitic graphite. Ultrasonics Sonochemistry. 2023;95:106415. https://doi.org/10.1016/j.ultsonch.2023.106415
33. Binnemans K., Jones P.T. Methanesulfonic acid (MSA) in hydrometallurgy. Journal of Sustainable Metallurgy. 2023;9:26—45. https://doi.org/10.1007/s40831-022-00641-6
34. Rudnik E., Wincek D. Preliminary studies on hydrometallurgical tin recovery from waste of tin stripping of copper wires. Metallurgy and Foundry Engineering. 2017;43(1):7—20. https://doi.org/10.7494/mafe.2017.43.1.7
Review
For citations:
Kolmachikhina E.B., Kolmachikhina O.B., Yankina Ya.A., Golibzoda Z.M., Brizhevataya P.A., Sedel’nikova D.S., Khabibulina R.E. Effect of ultrasonic treatment on tin recovery from decommissioned displays in sulphuric, hydrochloric, and methanesulphonic acid solutions. Izvestiya. Non-Ferrous Metallurgy. 2024;(4):22-32. https://doi.org/10.17073/0021-3438-2024-4-22-32