Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Investigation of the conditions (nature) of pentacoordinated aluminum oxide formation

https://doi.org/10.17073/0021-3438-2024-4-5-10

Abstract

Aluminum oxide is widely used as a catalyst carrier, including in internal combustion engine systems, where operating temperatures exceed 1000 °C. As such, aluminum oxide must exhibit enhanced thermal stability. This property is linked to the presence of pentacoordinated centers on the surface of the γ-phase of Al2O3. This paper examines the effect of the pH during aluminum hydroxide precipitation on the formation of pentacoordinated centers on the surface of aluminum oxide. The samples of aluminum hydroxide were synthesized via controlled double-jet precipitation, followed by thermal decomposition into oxides. Precipitation was carried out at constant pH levels, and for comparison, parallel samples were synthesized at pH values of 5, 6, 7, 8, and 9. The precursors for precipitation were a 1 M aluminum nitrate solution (Al3+) and a 10 wt. % ammonia solution (NH4OH). The solutions were introduced into the reactor in a dropwise mode with continuous stirring. The resulting aluminum oxide samples were analyzed using X-ray diffraction and nuclear magnetic resonance techniques. The data show a direct correlation between the pH of aluminum hydroxide precipitation and the presence of pentacoordinated centers on the aluminum oxide surface: the higher the pH, the lower the content of pentacoordinated atoms. Additionally, a relationship was observed between the pH value and the size of the coherent scattering region, with an increase in coherent scattering observed at higher pH levels.

About the Authors

P. A. Solodovnikova
Ural Federal University n.a. the First President of Russia B.N. Eltsin
Russian Federation

Polina A. Solodovnikova – Postgraduate Student, Engineer, Department of Rare Metals and Nanomaterials

19 Mira Str., Ekaterinburg 620002



M. A. Mashkovtsev
Ural Federal University n.a. the First President of Russia B.N. Eltsin; Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Maxim A. Mashkovtsev – Cand. Sci. (Chem.), Associate Prof., Department of Rare Metals and Nanomaterials; Head of the Ceramics Laboratory

19 Mira Str., Ekaterinburg 620002

20 Akademicheskaya Str., Ekaterinburg 620137



V. N. Rychkov
Ural Federal University n.a. the First President of Russia B.N. Eltsin
Russian Federation

Vladimir N. Rychkov – Dr. Sci. (Chem.), Professor, Department of Rare Metals and Nanomaterials

19 Mira Str., Ekaterinburg 620002



G. V. Ginko
Ural Federal University n.a. the First President of Russia B.N. Eltsin
Russian Federation

Georgiy V. Ginko – Student, Department of Rare Metals and Nanomaterials

19 Mira Str., Ekaterinburg 620002



T. E. Telegin
Ural Federal University n.a. the First President of Russia B.N. Eltsin
Russian Federation

Trofim E. Telegin – Student, Department of Rare Metals and Nanomaterials

19 Mira Str., Ekaterinburg 620002



M. V. Ugryumova
Ural Federal University n.a. the First President of Russia B.N. Eltsin
Russian Federation

Maria V. Ugrumova – Student, Department of Rare Metals and Nanomaterials

19 Mira Str., Ekaterinburg 620002



References

1. Industrial аlumina сhemicals. Analytical Chemistry. 1987;59:706A—706A. https://doi.org/10.1021/ac00137a744

2. Ratnasamy P., Knözinger H. Infrared and optical spectroscopic study of Co—Mo—Al2O3 catalysts. Journal of Catalysis. 1978;54(2):155—165. https://doi.org/10.1016/0021-9517(78)90038-6

3. Rahimpour M.R., Jafari M., Iranshahi D. Progress in catalytic naphtha reforming process: A review. Applied Energy. 2013;109:79—93. https://doi.org/10.1016/j.apenergy.2013.03.080

4. Datsko T.Y., Zelentsov V.I. Dependence of the surface charge and the fluorine adsorption by γ-aluminum oxide on the solution temperature. Surface Engeneering and Applied Electrochemistry. 2009;45:404—410. https://doi.org/10.3103/S1068375509050111

5. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews. 2014;114:10613—10653. https://doi.org/10.1021/cr5002436

6. Yashnik S.A., Kuznetsov V.V., Ismagilov Z.R. Effect of χ-alumina addition on H2S oxidation properties of pure and modified γ-alumina. Chinese Journal of Catalysis. 2018;39:258—274. https://doi.org/10.1016/S1872-2067(18)63016-5

7. Morales-Perez A.A., Martínez-Hernandez A., Fuentes G.A. NO adsorption during lean-rich cycles on Pt—Ba/γ-Al2O3 traps in a gas stream simulating the exhaust of gasoline engines. Adsorption. 2015;21:677—686. https://doi.org/10.1007/s10450-015-9718-0

8. Wang J., Wen J., Shen M. Effect of interaction between Ce0.7Zr0.3O2 and Al2O3 on structural characteristics, thermal stability, and oxygen storage capacity. Journal of Physical Chemistry. 2008;112(13):5113—5122. https://doi.org/10.1021/jp711331g

9. Li S., Li X., Dan Y., Jiao Y., Deng J., Xiong L., Wang J., Chen Y. Designed synthesis of nanostructured Al2O3 stabilized homogeneous CeO2—ZrO2 solid solution as highly active support for Pd-only three-way catalyst. Molecular Catalysis. 2019;477:110513. https://doi.org/10.1016/j.mcat.2019.110513

10. Kang D., Yu X., Ge M., Lin M., Yang X., Jing Y. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chemical Engineering Journal. 2018;345:252—259. https://doi.org/10.1016/j.cej.2018.03.174

11. Yang X., Li Q., Wang Z., Gong X., Yu Z., Guo Y., Wang L., Guo Y., Zhan W., Zhang J., Dai S. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications. 2019;10:1611. https://doi.org/10.1038/s41467-019-09662-4

12. Jang E.J., Lee J., Jeong H.Y., Kwak J.H. Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts. Applied Catalysis, A: General. 2019;572:1—8. https://doi.org/10.1016/j.apcata.2018.12.024

13. Kwak J.H., Hu J.Z., Kim D.H., Szanyi J., Peden C.H.F. Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. Journal of Catalysis. 2007;251(1):189—194. https://doi.org/10.1016/j.jcat.2007.06.029

14. Kwak J.H., Hu J., Mei D., Yi C., Kim D.H., Peden C.H.F., Allard L., Szanyi J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science. 2009;325:1670—1673. https://doi.org/10.1126/science.1176745

15. Lee J., Jang E.J., Kwak J.H. Effect of number and properties of specific sites on alumina surfaces for Pt—Al2O3 catalysts. Applied Catalysis, A: General. 2018;569:16833. https://doi.org/10.1016/j.apcata.2018.10.004

16. Wang Ya., Pei С., Wang X., Sun G., Zhao Z., Gong J. The role of pentacoordinate Al3+ sites of Pt/Al2O3 catalysts in propane dehydrogenation. Fundamental Research. 2022;388:4—13. https://doi.org/10.1016/j.fmre.2022.08.020

17. Wang Z., Jiang Y., Jin F., Stampfl C., Hunger M., Baiker A., Huang J. Strongly enhanced acidity and activity of amorphous silica—alumina by formation of pentacoordinated AlV species. Journal of Catalysis. 2019;372:1—7. https://doi.org/10.1016/j.jcat.2019.02.007

18. Ivanova A.S., Melgunov M.S. Aluminum oxide: application, methods of preparation, structure and acid-base properties. Moscow: Kalvis, 2009. 105 p. (In Russ.).

19. Pakhomov N.A. Scientific bases of preparation of catalysts: introduction to theory and practice. Novosibirsk: SB RAS, 2011. 261 p. (In Russ.).

20. Levin I., Bendersky L.A., Brandon D.G., Rühle M. Cubic to monoclinic phase transformations in alumina. Acta Materialia. 1997;45:3659—3669. https://doi.org/10.1016/S1359-6454(97)00040-2

21. Ivanova A.S., Litvak G.S., Kryukova G.N., Tsybulya S.V., Paukshtis E.A. Real structure of metastable forms of aluminum oxide. Kinetics and Catalysis. 2000;41:137—141. https://doi.org/10.1007/BF02756150

22. Anna K.К., Bogireddy K.R., Agarwal V., Bon R.R. Synthesis of α and γ phase of aluminium oxide nanoparticles for the photocatalytic degradation of methylene blue under sunlight: A comparative study. Materials Letters. 2022;317: 132085. https://doi.org/10.1016/j.matlet.2022.132085

23. Kureti S., Weisweiler W. A new route for the synthesis of high surface area γ-aluminium oxide xerogel. Applied Catalysis, A: General. 2002;225:251—259. https://doi.org/10.1016/S0926-860X(01)00870-5

24. Fernandes E.P., Silva T.S., Carvalho C.M., Selvasembian R., Chaukura N., Oliveira L.M.T.M., Meneghetti S.M.P., Meili L. Efficient adsorption of dyes by γ-alumina synthesized from aluminum wastes: Kinetics, isotherms, thermodynamics and toxicity assessment. Journal of Environmental Chemical Engineering. 2021;9:106198. https://doi.org/10.1016/j.jece.2021.106198

25. Mahinroosta M., Allahverdi A. Production of high purity α-and γ-alumina from aluminum dross. Encyclopedia of Renewable and Sustainable Materials Engeneering. 2020;2:473—482. https://doi.org/10.1016/b978-0-12-803581-8.11473-0


Review

For citations:


Solodovnikova P.A., Mashkovtsev M.A., Rychkov V.N., Ginko G.V., Telegin T.E., Ugryumova M.V. Investigation of the conditions (nature) of pentacoordinated aluminum oxide formation. Izvestiya. Non-Ferrous Metallurgy. 2024;(4):5-10. https://doi.org/10.17073/0021-3438-2024-4-5-10

Views: 207


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)