Influence of manganese alloying on the structure and properties of electrospark coatings of EP741NP heat-resistant nickel LPBF alloy
https://doi.org/10.17073/0021-3438-2024-2-70-84
Abstract
The paper investigates the impact of Mn content (Mn = 0; 0.5; 0.6; 1; 1.5 at.%) in the composition of the electrodes of the Al–Ca–Mn system on the structure and properties of electrospark coatings formed on LPBF substrates made of EP741NP alloy. It was found that the highest weight gain of the substrate (5.8·10–4 g) was recorded when the Al–7%Ca–1%Mn electrode with a low degree of supercooling of the melt (Δt = 5 °C) was subject to electrospark treatment (EST). EST with this electrode with a fine eutectic structure enables the formation of coatings with minimal surface roughness (Ra = 3.51±0.14 μm). The nanocrystalline structure of the coatings was confirmed by transmission electron microscopy, including HRTEM. Comparative tribological tests revealed that the coating with maximum hardness (10.7±0.8 GPa) formed during EST with an electrode containing 1.5 at.% Mn had the minimal wear rate (1.86 ·10–5 mm3/(N· m)). We proved that EST with Al–Ca–Mn electrodes enables to reduce the specific weight gain of the LPBF EP741NP alloy during isothermal (t = 1000 °C) curing in air due to in situ formation of a complex thermal barrier layer consisting of oxides (α-Al2O3, CaMoO4) and intermetallides (γ ′-Ni3Al and β-NiAl). We determined the concentration limit of Mn (1.0 at.%) in the electrode, at which the barrier layer retains its integrity and functionality.
Keywords
About the Authors
S. K. MukanovRussian Federation
Samat K. Mukanov – Cand. Sci. (Eng.), Junior Research Scientist of the Laboratory “In situ Diagnostics of Structural Transformations” of Scientific Educational Center of Self– Propagating High-Temperature Synthesis (SHS-Center) of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
M. I. Petrzhik
Russian Federation
Mikhail I. Petrzhik – Dr. Sci. (Eng.), Professor of the Department of Powder Metallurgy and Functional Coatings (PM&FC) of NUST MISIS; Leading Research Scientist of the Laboratory “In situ Diagnostics of Structural Transformations” of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
P. A. Loginov
Russian Federation
Pavel A. Loginov – Cand. Sci. (Eng.), Senior Lecturer of the Department of PM&FC of NUST MISIS; Senior Research Scientist of the Laboratory “In situ Diagnostics of Structural Transformations” of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
E. A. Levashov
Russian Federation
Evgeny A. Levashov – Dr. Sci. (Eng.), Prof., Academic of the Russian Academy of Natural Science, Head of the Department of PM&FC of NUST MISIS, Head of SHS-Center of MISIS–ISMAN
4 Bld. 1 Leninskiy Prosp., Moscow 119049
References
1. De Barbadillo J.J. 14-Inconel alloy 740H. (Ed. A.Di Gianfrancesco). In: Materials for ultra-supercritical and advanced ultra-supercritical power plants. Sawston, Cambridge: Woodhead Publ., 2017. Р. 469—510. https://doi.org/10.1016/B978-0-08-100552-1.00014-2
2. Barella S., Boniardi M., Cincera S., Pellin P., Degive X., Gijbels S. Failure analysis of a third stage gas turbine blade. Engineering Failure Analysis. 2011;18(1):386—393. https://doi.org/10.1016/j.engfailanal.2010.09.017
3. Yang M., Zhou Y., Yang J., Bao J., Wang D., Yu Q. Performance analysis of an efficient waste heat utilization system in an ultra-supercritical coal-fired power plant. Energy Reports. 2022;8: 5871—720. https://doi.org/10.1016/j.egyr.2022.04.044
4. Peng J.Q., Zhang H.T., Li Y.F. Review of blade materials for IGT. Procedia Engineering. 2015;130:668—675. https://doi.org/10.1016/j.proeng.2015.12.295
5. Liang F., Meng A., Sun Y., Chen Zh., Jiang Zh., Zhang Y., Zhang Y., Zhu Y., Chen X. A novel wear-resistant Nibased superalloy via high Cr-induced subsurface nanotwins and heterogeneous composite glaze layer at elevated temperatures. Tribology International. 2023;183:108383. https://doi.org/10.1016/j.triboint.2023.108383
6. Kamalan Kirubaharan A.M., Kuppusami P., Ghosh Ch., Priya R., Ningshen S., Dinesh Kumar D., Divakar R. Metal-ceramic diffusion barrier nanocomposite coatings on nickel based superalloys for corrosion and high temperature oxidation resistance. Ceramics International. 2022;48:31281—31288. https://doi.org/10.1016/j.ceramint.2022.06.203
7. Sanin V.V., Aheiev M.I., Kaplanskii Y.Y., Loginov P.A., Bychkova M.Y., Levashov E.A. The effect of dopants on structure formation and properties of cast SHS alloys based on nickel monoaluminide. Materials. 2023;16(9):3299. https://doi.org/10.3390/ma16093299
8. Kurzynowski T., Smolina I., Kobiela K., Kuźnicka B., Chlebus E. Wear and corrosion behaviour of Inconel 718 laser surface alloyed with rhenium. Materials & Design. 2017;132:349—359. https://doi.org/10.1016/j.matdes.2017.07.024
9. Behera A., Sahoo A.K. Wear behaviour of Ni based superalloy: A review. Materials Today: Proceedings. 2020;33(8):5638—5642. https://doi.org/10.1016/j.matpr.2020.04.007
10. Yu W., Ming W., An Q., Chen M. Cutting performance and wear mechanism of honeycomb ceramic tools in interrupted cutting of nickel-based superalloys. Ceramics International. 2021;47(13):18075—18083. https://doi.org/10.1016/j.ceramint.2021.03.123
11. Campos-Silva I., Contla-Pacheco A.D., Figueroa-López U., Martínez-Trinidad J., Garduño-Alva A., Ortega-Avilés M. Sliding wear resistance of nickel boride layers on an Inconel 718 superalloy. Surface and Coatings Technology. 2019;378:124862. https://doi.org/10.1016/j.surfcoat.2019.06.099
12. Yang Sh., Gao S., Xue W., Wu B., Cheng H., Duan D. Epitaxial growth and oxidation behavior of the NiCoCrAlYTa/Y2O3 coating on a nickel-based single— crystal superalloy blade tips, produced by electro spark deposition. Journal of Alloys and Compounds. 2023;931:167600. https://doi.org/10.1016/j.jallcom.2022.167600
13. Balaguru S., Gupta M. Hardfacing studies of Ni alloys: A critical review. Journal of Materials Research and Technology. 2021;10:1210—1242. https://doi.org/10.1016/j.jmrt.2020.12.026
14. Jude S.A.A., Winowlin Jappes J.T., Adamkhan M. Thermal barrier coatings for high-temperature application on superalloy substrates — A review. Materials Today: Proceedings. 2022;60:1670—1675. https://doi.org/10.1016/j.matpr.2021.12.223
15. Darolia R. Thermal barrier coatings technology: Critical review, progress update, remaining challenges and prospects. International Materials Reviews. 2013;58(6):315— 348. https://doi.org/10.1179/1743280413Y.0000000019
16. Jayalakshmi V., Subramanian K.R.V. Thermal barrier coatings: state-of-art developments and challenges: A mini review. Transactions of the IMF. 2022;100(1):6—9. https://doi.org/10.1080/00202967.2021.1979813
17. Evans A.G., Clarke D.R., Levi C.G. The influence of oxides on the performance of advanced gas turbines. Journal of the European Ceramic Society. 2008;28(7): 1405—1419. https://doi.org/10.1016/j.jeurceramsoc.2007.12.023
18. Mukanov S.K., Baskov F.A., Petrzhik M.I., Levashov E.A. Electro-spark treatment with low-melting Al—Si and Al—Ca electrodes in order to improve wear and oxidation resistance of EP741NP alloy prepared by selective laser melting. Metallurgist. 2022;66(3-4):317—326. https://doi.org/10.1007/s11015-022-01331-0
19. Junwei Fu, Kai Cui Effect of Mn content on the microstructure and corrosion resistance of Al—Cu—Mg—Mn alloys. Journal of Alloys and Compounds. 2022;896:162903. https://doi.org/10.1016/j.jallcom.2021.162903
20. Naumova E., Doroshenko V., Barykin M., Sviridova T., Lyasnikova A., Shurkin P. Hypereutectic Al—Ca—Mn— (Ni) alloys as natural eutectic composites. Metals. 2021;11:890. https://doi.org/10.3390/met11060890
21. Petrzhik M., Molokanov V., Levashov E. On conditions of bulk and surface glass formation of metallic alloys. Journal of Alloys and Compounds. 2017;707:68—72. https://doi.org/10.1016/j.jallcom.2016.12.293
22. Arroyo-de Dompablo E., Ponrouch A., Johansson P., Palacín R. Achievements, challenges, and prospects of calcium batteries. Chemical Reviews. 2020;120(14):6331— 6357. https://doi.org/10.1021/acs.chemrev.9b00339
23. Potanin A.Yu., Astapov A.N., Pogozhev Yu.S., Rupasov S.I., Shvyndina N.V., Klechkovskaya V.V., Levashov E.A., Timofeev I.A., Timofeev A.N. Oxidation of HfB2—SiC ceramics under static and dynamic conditions. Journal of the European Ceramic Society. 2021;41(16): 34—47. https://doi.org/10.1016/j.jeurceramsoc.2021.09.018
24. Tian Sh., He A., Liu J., Zhang Y., Yang Y., Zhang Y., Jiang H. Oxidation resistance of TiAl alloy improved by hot-pack rolling and cyclic heat treatment. Materials Characterization. 2021;178:111196. https://doi.org/10.1016/j.matchar.2021.111196
25. Zhou B., He J., Liu L., Wang S., Sun J., Wei L., Guo H. The interaction between Dy, Pt and Mo during the short— time oxidation of (γ ′ + β) two-phase Ni—Al coating on single crystal superalloy with high Mo content. Surface and Coatings Technology. 2022;430:127999. https://doi.org/10.1016/j.surfcoat.2021.127999
26. Bsaibess E., Delorme F., Monot-Laffez I., Giovannelli F. Ultra-low thermal conductivity in scheelite and A-deficient scheelite ceramics. Scripta Materialia. 2021;201:113950. https://doi.org/10.1016/j.scriptamat.2021.113950
27. Ait Laasri H., Bsaibess E., Delorme F., Nataf G.F., Giovannelli F. Ultra-low lattice thermal conductivity in tungsten-based scheelite ceramics. Journal of Alloys and Compounds. 2023;955:170167. https://doi.org/10.1016/j.jallcom.2023.170167
28. Yun D. W., Seo S.M., Jeong H.W., Yoo Y.S. The effects of the minor alloying elements Al, Si and Mn on the cyclic oxidation of Ni—Cr—W—Mo alloys. Corrosion Science. 2014;83:176—188. https://doi.org/10.1016/j.corsci.2014.02.015
29. Zhou B., He J., Peng H., Sun J., Guo H. The influence of Hf content on oxide scale microstructure and HfO2 formation mechanisms in two-phase (γ ′ + β) Ni—Al alloys. Materials Characterization. 2022;184:111659. https://doi.org/10.1016/j.matchar.2021.111659
Review
For citations:
Mukanov S.K., Petrzhik M.I., Loginov P.A., Levashov E.A. Influence of manganese alloying on the structure and properties of electrospark coatings of EP741NP heat-resistant nickel LPBF alloy. Izvestiya. Non-Ferrous Metallurgy. 2024;(2):70-84. https://doi.org/10.17073/0021-3438-2024-2-70-84