Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Fabrication of high speed steel electrodes with MoSi2–MoB–HfB2 ceramic additives for electrospark deposition on die steel

https://doi.org/10.17073/0021-3438-2024-2-55-69

Abstract

The electrodes for electrospark deposition (ESD) were fabricated from hot-pressed blanks composed of a mechanically alloyed powder mixture of R6M5K5 high speed steel. This mixture was enriched with a 40 % addition of heat-resistant MoSi2–MoB–HfB2 ceramics, produces through the self-propagating high-temperature synthesis method (resulting in the R6M5K5-K electrode), as well as variant without any ceramic addition (resulting in the R6M5K5 electrode). We examined both the composition and structure of the electrode materials and the coatings derived from them, identifying the characteristics of mass transfer from hot-pressed electrodes to substrates of 5KhNM die steel under various frequencies and energy conditions during processing. The R6M5K5 electrode consists of an α-Fe-based matrix incorporating dissolved alloying elements and contains discrete particles of ferrovanadium, tungsten carbide, and molybdenum. The R6M5K5-K electrode, in addition to the α-Fe-based matrix, includes borides and carbides, as well as hafnium oxide. The use of the R6M5K5 electrode resulted in a consistent weight increase in the cathode throughout the entire 10-minute processing period. In contrast, the application of the ceramicenhanced electrode led to weight gain only during the initial 3 min of processing. Subsequently, ESD produced coatings of 22 and 50 μm thickness on the surface of 5KhNM steel using R6M5K5 and R6M5K5-K electrodes, respectively. The introduction of SHS ceramics escalated the roughness (Ra) of the surface layers from 6 to 13 μm and the hardness from 9.1 to 15.8 GPa. The coating from the R6M5K5 electrode was composed of austenite (γ-Fe) and exhibited high uniformity. Conversely, the coating from the R6M5K5-K electrode consisted of a diverse matrix with both crystalline and amorphous iron, an amorphous phase rooted in the Fe–B alloy, and scattered phases of HfO2, HfSiO4, Fe3Si, and Fe3B. High-temperature tribological testing at 500 °C in an air atmosphere showed that the coatings possess a friction coefficient of 0.55–0.57 when coupled with a counterbody of AISI 440C steel. The integration of heat-resistant ceramics notably enhanced the coating's wear resistance, increasing it by a factor of 13.5.

About the Authors

A. Akhmetov
National University of Science and Technology “MISIS”
Russian Federation

Amankeldy Akhmetov – Engineer of Scientific Project of the Department of Powder Metallurgy and Functional Coatings (PM&FC)

4 Bld 1 Leninskiy Prosp., Moscow 119049



Zh. V. Eremeeva
National University of Science and Technology “MISIS”
Russian Federation

Zhanna V. Eremeeva – Dr. Sci. (Eng.), Professor of the Department of PM&FC

4 Bld 1 Leninskiy Prosp., Moscow 119049



A. E. Kudryashov
National University of Science and Technology “MISIS”
Russian Federation

Alexander E. Kudryashov – Cand. Sci. (Eng.), Leading Researcher at the Laboratory “In Situ Diagnostics of Structural Transformations” of Scientific-Educational Centеr of SHS (SHS-Centеr) 

4 Bld 1 Leninskiy Prosp., Moscow 119049



P. A. Loginov
National University of Science and Technology “MISIS”
Russian Federation

Pavel A. Loginov – Cand. Sci. (Eng.), Senior Lecturer of the Department of PM&FC of NUST MISIS; Senior Research Scientist of the Laboratory “In situ Diagnostics of Structural Transformations” of SHS-Center of MISIS–ISMAN

4 Bld 1 Leninskiy Prosp., Moscow 119049



S. D. Shlyapin
Moscow Aviation Institute (National Research University); National University of Science and Technology “MISIS”
Russian Federation

Sergey D. Shlyapin – Dr. Sci. (Eng.), Professor of the Department of Materials Science and Materials Processing Technology, Moscow Aviation Institute (National Research University); Lead Project Expert of NUST MISIS

4 Volokolamskoe shosse, Moscow 125993, 

4 Bld 1 Leninskiy Prosp., Moscow 119049



M. E. Samoshina
National University of Science and Technology “MISIS”
Russian Federation

Marina E. Samoshina – Cand. Sci. (Eng.), Head of the Division of Academic Degrees, Academic Secretary of NUST MISIS Dissertation Board

4 Bld 1 Leninskiy Prosp., Moscow 119049



E. A. Levashov
National University of Science and Technology “MISIS”
Russian Federation

Evgeny A. Levashov – Dr. Sci. (Eng.), Prof., Academic of the Russian Academy of Natural Science, Head of the Department of PM&FC of NUST MISIS, Head of SHS-Center of MISIS–ISMAN

4 Bld 1 Leninskiy Prosp., Moscow 119049



References

1. Straffelini G., Bizzotto G., Zanon V. Improving the wear resistance of tools for stamping. Wear. 2010;269(9-10): 693—697. https://doi.org/10.1016/j.wear.2010.07.004

2. Ivanov V.I., Burumkulov F.Kh. Strengthening and increasing the service life of objects using the electrospark deposition method: classification, features of the technology. Elektronnaya obrabotka materialov. 2010;5:27—36. (In Russ.).

3. Иванов В.И. Повышение ресурса разделительных штампов путем упрочнения и восстановления их электроискровым легированием: Дис. … канд. техн. наук. Саранск: ВНИИТУВИД «Ремдеталь», 2000.

4. Gadalov V.N., Gvozdev A.E., Starikov N.E., Romanenko D.N., Kalinin A.A., Filatov E.A., Makarova I.A., Vornacheva I.V. Increase of reliability of tooling and instrument of the stamping equipment. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2017;11(2):114—124. (In Russ.).

5. Kudryashov A.E., Levashov E.A., Aksenov L.B., Petrov V.M. Use of electric spark alloying technology and promising nanostructured electrode materials for improving the life of punching equipment. Metallurgist. 2010;54(7):514—522.

6. Tušek J., Kosec L., Lešnjak A., Muhič T. Electrospark deposition for die repair. Metalurgiya. 2012;51:17—20.

7. Kuptsov K.A., Sheveyko A.N., Sidorenko D.A., Shtansky D.V. Electro-spark deposition in vacuum using graphite electrode at different electrode polarities: Peculiarities of microstructure, electrochemical and tribological properties. Applied Surface Science. 2021;566:150722. https://doi.org/10.1016/j.apsusc.2021.150722

8. Kuptsov K.A., Antonyuk M.N., Sheveyko A.N., Shtansky D.V. Hydrophobic, anti-ice, wear- and corrosion-resistant C—(Ti)—PTFE coatings on Ti obtained by electrospark deposition using PTFE-impregnated graphite electrode. Surface and Coatings Technology. 2023;465: 129621. https://doi.org/10.1016/j.surfcoat.2023.129621

9. Kudryashov A.E., Kiryukhantsev-Korneev P.V., Mukanov S.K., Petrzhik M.I., Levashov E.A. The effect of electrospark deposition using zirconium electrodes on structure and properties of nickel-containing alloy obtained selective laser melting. Powder Metallurgy аnd Functional Coatings. 2022;3:63—77. (In Russ.). https://doi.org/10.17073/1997-308X-2022-3-63-77

10. Tarelnyk V.B., Paustovskii A.V., Tkachenko Y.G., Konoplianchenko E.V., Martsynkovskyi V.S., Antoszewski B. Electrode materials for composite and multilayer electrospark-deposited coatings from Ni—Cr and WC—Co alloys and metals. Powder Metallurgy and Metal Ceramics. 2017;55:585—595. https://doi.org/10.1007/s11106-017-9843-2

11. Mukanov S.K., Baskov F.A., Petrzhik M.I., Levashov E.A. Electro-spark treatment with low-melting Al—Si and Al—Ca electrodes in order to improve wear and oxidation resistance of EP741NP alloy prepared by selective laser melting. Metallurgist. 2022;66:317—326. https://doi.org/10.1007/s11015-022-01331-0

12. Renna G., Leo P., Casalino G., Cerri E. Repairing 2024 aluminum alloy via electrospark deposition process: A feasibility study. Advances in Materials Science and Engineering. 2018:8563054. https://doi.org/10.1155/2018/8563054

13. Kandeva M., Kostadinov G., Penyashki T., Kamburov V., Petrzhik M., Elenov B., Nikolov A., Dimitrova R., Valkanov S. Abrasive wear resistance of electrospark coatings on titanium alloys. Tribology in Industry. 2022; 44:132—142. https://doi.org/10.24874/ti.1143.06.21.09

14. Kostadinov G., Danailov P., Dimitrova R., Kandeva M., Penyashki T., Kamburov V., Nikolov A., Elenov B. Surface topography and roughness parameters of electrospark coatings on titanium and nickel alloys. Applied Engineering Letters Journal of Engineering and Applied Sciences. 2021;6:89—98. https://doi.org/10.18485/aeletters.2021.6.3.1

15. Burkov A., Pyachin S. Investigation of WC—Co еlectrospark coatings with various carbon contents. Journal of Materials Engineering and Performance. 2014;23: 2034—2042. https://doi.org/10.1007/s11665-014-0974-z

16. Burkov A., Pyachin S. Formation of WC—Co coating by a novel technique of electrospark granules deposition. Materials & Design. 2015;80:109—115. https://doi.org/10.1016/j.matdes.2015.05.008

17. Barile C., Casavola C., Pappalettera G., Renna G. Advancements in electrospark deposition (ESD) technique: A short review. Coatings. 2022;12:1536. https://doi.org/10.3390/coatings12101536

18. Kuz’min M.P., Chu P.K., Qasim A.M., Larionov L.M., Kuz’mina M.Yu., Kuz’min P.B. Obtaining of Al—Si foundry alloys using amorphous microsilica — Crystalline silicon production waste. Journal of Alloys and Compounds. 2019;806:806—813. https://doi.org/10.1016/j.jallcom.2019.07.312

19. Kuz’min M.P., Kuz’mina M.Yu., Kuz’min P.B. Possibilities and prospects for producing silumins with different silicon contents using amorphous microsilica. Transactions of Nonferrous Metals Society of China. 2020;30(5):1406—1418. https://doi.org/10.1016/S1003-6326(20)65306-7

20. Chengyong W., Xie Y., Zheng L., Qin Z., Tang D., Song Y. Research on the chip formation mechanism during the high-speed milling of hardened steel. International Journal of Machine Tools and Manufacture. 2014;79:31—48. https://doi.org/10.1016/j.ijmachtools.2014.01.002

21. Dvornik M.I., Mikhailenko E.A. Production of WC— 15Co ultrafine-grained hard alloy from powder obtained by VK15 alloy waste spark erosion in water. Powder Metallurgy аnd Functional Coatings. 2020;(3):4—16. (In Russ.). https://doi.org/10.17073/1997-308X-2020-3-4-16

22. Potanin A.Yu., Vorotilo S., Pogozhev Yu.S., Rupasov S.I., Lobova T.A., Levashov E.A. Influence of mechanical activation of reactive mixtures on the microstructure and properties of SHS-ceramics MoSi2—HfB2—MoB. Ceramics International. 2019;45(16):20354—20361. https://doi.org/10.1016/j.ceramint.2019.07.009

23. Zamulaeva E.I., Sheveyko A.N., Kaplanskii Y.Y., Levashov E.A. Structure formation and tribological properties of Mo—Si—B—Hf electrospark coatings based on Mo2Ni3Si laves phase. Materials. 2022;15(16):5613. https://doi.org/10.3390/ma15165613

24. Гитлевич А.Е., Михайлов В.В., Парканский Н.Я., Ревуцкий В.М. Электроискровое легирование металлических поверхностей. Кишинев: Штиинца, 1985. 196 с.

25. Nan Chen, Ren Luo, Huiwen Xiong, Zhiyou Li. Dense M2 high speed steel containing core-shell MC carbonitrides using high-energy ball milled M2/VN composite powders. Materials Science and Engineering: A. 2020:771(138628). https://doi.org/10.1016/j.msea.2019.138628

26. Верхотуров А.Д., Подчерняева И.А., Прядко Л.Ф., Егоров Ф.Ф. Электродные материалы для электроискрового легирования. М.: Наука, 1988. 200 с.

27. Huyan F., Larker R., Rubin P. Effect of solute silicon on the lattice parameter of ferrite in ductile irons. ISIJ International. 2014;54:248—250. https://doi.org/10.2355/isijinternational.54.248

28. Диаграммы состояния двойных металлических систем: Справочник. В 3 т. Т. 2. Под общ. ред. Н.П. Лякишева. М.: Машиностроение, 1997. 1024 с.

29. Диаграммы состояния двойных металлических систем: Справочник. В 3 т. Т. 3. Кн. 1. Под общ. ред. Н.П. Лякишева. М.: Машиностроение, 2001. 872 с.

30. Ozden M.G., Morley N.A. Laser additive manufacturing of Fe-based magnetic amorphous alloys. Magnetochemistry. 2021;7:20. https://doi.org/10.3390/magnetochemistry7020020

31. Fakoori Hasanabadi M., Malek Ghaini F., Ebrahimnia M., Shahverdi H.R. Production of amorphous and nanocrystalline iron based coatings by electro-spark deposition process. Surface and Coatings Technology. 2015;270:95—101. https://doi.org/10.1016/j.surfcoat.2015.03.016

32. Hamaguchi T., Nakamura R., Asano K., Wada T., Suzuki T. Diffusion of boron in an amorphous ironboron alloy. Journal of Non-Crystalline Solids. 2023; 601:122070. https://doi.org/10.1016/j.jnoncrysol.2022.122070


Review

For citations:


Akhmetov A., Eremeeva Zh.V., Kudryashov A.E., Loginov P.A., Shlyapin S.D., Samoshina M.E., Levashov E.A. Fabrication of high speed steel electrodes with MoSi2–MoB–HfB2 ceramic additives for electrospark deposition on die steel. Izvestiya. Non-Ferrous Metallurgy. 2024;(2):55-69. https://doi.org/10.17073/0021-3438-2024-2-55-69

Views: 293


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)