Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Synthesis and study of the properties of zirconium dioxide powders with different yttrium content

https://doi.org/10.17073/0021-3438-2024-2-44-54

Abstract

As part of the study, the influence of yttrium content on the properties of particles during controlled precipitation and after thermal treatment was investigated. Precipitation was carried out at a constant pH of 5 from nitric acid solutions, where the concentration of zirconium was 1 mole/dm3 and the yttrium content ranged from 0 to 30 % based on their oxides. The drying and calcination temperatures of the precipitates were 40 °C and 1000 °C, respectively. It was shown that with a yttrium content of up to 15 %, there was a consistent increase in the average diameter of zirconium hydroxide particles during deposition. When the yttrium concentration was increased to 30 %, the average particle size increased during the first 10 minutes of deposition, followed by a gradual decrease. The largest particle diameter was observed in the specimen with 7 % yttrium. In all cases, the formation of spherical aggregates was observed. With an increasing yttrium content, the boundaries between particles became smoother, and the degree of co-deposition of yttrium during synthesis decreased from 80 % to 60 %. Depending on the yttrium concentration, different modifications of stabilized zirconium dioxide powders were obtained: tetragonal ZrO2 for 2–7 % yttrium, and cubic ZrO2 for 15–30 % yttrium. Therefore, the results obtained during the study can be useful for the development of technology for the production of powdered materials for various applications.

About the Authors

S. V. Buinachev
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Sergei V. Buinachev – Laboratory Assistant-researcher of the Department of Rare Metals and Nanomaterials, Ural Federal University named after the first President of Russia B.N. Yeltsin (UrFU); Junior Researcher of the Laboratory of Сeramics, Institute of High Temperature Electrochemistry of Ural Branch of the Russian Academy of Sciences (IHTE UB RAS)

19 Mira Str., Yekaterinburg, Sverdlovsk region 620002, 

20 Akademicheskaya Str., Yekaterinburg 620066



M. A. Domashenkov
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Maksim A. Domashenkov – Laboratory Assistant-researcher of the Department of Rare Metals and Nanomaterials, UrFU; Junior Researcher of the Laboratory of Сeramics, IHTE UB RAS

19 Mira Str., Yekaterinburg, Sverdlovsk region 620002, 

20 Akademicheskaya Str., Yekaterinburg 620066



M. A. Mashkovtsev
Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Maksim A. Mashkovtsev – Cand. Sci. (Chem.), Researcher of the Laboratory of Electrochemical Devices and Fuel Cells

20 Akademicheskaya Str., Yekaterinburg 620066



D. O. Polivoda
Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Dmitry O. Polivoda – Junior Researcher of the Laboratory of Electrochemical Devices and Fuel Cells

20 Akademicheskaya Str., Yekaterinburg 620066



N. V. Zhirenkina
Ural Federal University named after the first President of Russia B.N. Yeltsin
Russian Federation

Nina V. Zhirenkina – Cand. Sci. (Eng.), Senior Researcher of the Laboratory of Advanced Functional Materials

19 Mira Str., Yekaterinburg, Sverdlovsk region 620002



References

1. Qiaomu L., Shunzhou H., Aijie H. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of Materials Science & Technology. 2019;35(12):2814—2823. https://doi.org/10.1016/j.jmst.2019.08.003

2. Liu G., Shen Z., He L., Mu R., Huang G. LaYZrO/YSZ double ceramic layer thermal barrier coatings by EB-PVD: Thermal performance, morphology and failure behavior. Materialia. 2023;27:101661. https://doi.org/10.1016/j.mtla.2022.101661

3. Erdoğan N.N., Başyiğit A.B. Investigating thermal shock and corrosion resistance of Inconel 601 super alloy after thermal barrier coating with 8 % YSZ powder. Materials Today Communications. 2023;36:106516. https://doi.org/10.1016/j.mtcomm.2023.106516

4. Moayedee Y., Nikzad L., Habibzadeh S. Mechanical, electrochemical, and biological properties of YSZ-Mo: A new class of bio-composites. Materialia. 2022;24:101515. https://doi.org/10.1016/j.mtla.2022.101515

5. Piconi C., Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1—25. https://doi.org/10.1016/S0142-9612(98)00010-6

6. Xiuping Z., Xin W., Jing S. Additive manufacturing of zirconia ceramics: a state-of-the-art review. Journal of Materials Research and Technology. 2020;9(4):9029—9048. https://doi.org/10.1016/j.jmrt.2020.05.131

7. Xiuan X., Hiroya A., Kazuo K., Ryo H., Anze S., Makio N. Novel Co-precipitation method to synthesize NiO—YSZ nanocomposite powder for solid oxide fuel cell. Advanced Powder Technology. 2014;25(2):490—494. https://doi.org/10.1016/j.apt.2013.08.001

8. Shao Z., Zhou W., Zhu Z. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science. 2012;57(4):804—874. https://doi.org/10.1016/j.pmatsci.2011.08.002

9. Monaco F., Effori E, Hubert M, Siebert E., Geneste G., Morel B., Djurado E., Montinaro D., Laurencin J. Electrode kinetics of porous Ni—3YSZ cermet operated in fuel cell and electrolysis modes for solid oxide cell application. Electrochimica Acta. 2021;389(1):138765. https://doi.org/10.1016/j.electacta.2021.138765

10. Jungwan C., Joonsuk P., Jihwan A. Low thermal conductivity of atomic layer deposition yttria-stabilized zirconia (YSZ) thin films for thermal insulation applications. Journal of the European Ceramic Society. 2017;37(9):3131— 3136. https://doi.org/10.1016/j.jeurceramsoc.2017.03.045

11. Raheleh A.-P., Reza S.-R., Reza M., Hossein J. Improving the hot corrosion resistance of plasma sprayed ceria—yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Materials & Design. 2014;57:336— 341. https://doi.org/10.1016/j.matdes.2013.12.075

12. Nikhil A. P., Balasubramanian K. Biological and mechanical enhancement of zirconium dioxide for medical applications. Ceramics International. 2020;46(4):4041— 4057. https://doi.org/10.1016/j.ceramint.2019.10.220

13. Chaoxi S., Jinshuang W., Xianjun L., Tingyang C., Mingyi X., Guang D., Yuancheng R., Zhongwei L., ZhixigD., Yifeng X, Guoqiang L., Yixing Z., Fuhe Y., Xueqiang C. Investigation of corrosion resistance of YSZ coating with sacrificial aluminum oxide protective layer against CMAS and composite corrosives. Journal of the European Ceramic Society. 2024;44(4):2537—2579. https://doi.org/10.1016/j.jeurceramsoc.2023.11.030

14. Clarke D.R.., Phillpot S.R. Thermal barrier coating materials. Materials Today. 2005;8(6):22—29. https://doi.org/10.1016/S1369-7021(05)70934-2

15. Padture N.P., Gell M., Jordan E.H. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280—284. https://www.science.org/doi/10.1126/science.1068609

16. Buinachev S., Mashkovtsev M.A., Zhirenkina N., Aleshin D., Dankova A. A new approach for the synthesis of monodisperse zirconia powders with controlled particle size. International Journal of Hydrogen Energy. 2021;46(32):16878—16887. https://doi.org/10.1016/j.ijhydene.2021.01.134

17. Yuzhuo L., Zhen Z., Xin W., Rende M., Limin H., Zhenhua X. Thermo-physical properties, morphology and thermal shock behavior of EB-PVD thermal barrier coating with DLC YbGdZrO/YSZ system. Materials Today Communications. 2023;35:106265. https://doi.org/10.1016/j.mtcomm.2023.106265

18. He W., Mauer G., Sohn Y.J, Schwedt A., Guillon O., Vaßen R. Investigation on growth mechanisms of columnar structured YSZ coatings in plasma spray-physical vapor deposition (PS-PVD). Journal of the European Ceramic Society. 2019;39(10):3129—3138. https://doi.org/10.1016/j.jeurceramsoc.2019.04.003

19. Gao L., Guo H., Wei L., Li C., Xu H. Microstructure, thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition. Surface and Coatings Technology. 2015;276:424—430. https://doi.org/10.1016/j.surfcoat.2015.06.033

20. Jude S.A.A., Winowlin Jappes J.T., Adamkhan M. Thermal barrier coatings for high-temperature application on superalloy substrates: A review. Materials Today: Proceedings. 2022;60(3):1670—1675. https://doi.org/10.1016/j.matpr.2021.12.223

21. Vaßen R., Jarligo M.O., Steinke T., Mack D. E., Stöver D. Overview on advanced thermal barrier coatings. Surface and Coatings Technology. 2010;205(4);938—942. https://doi.org/10.1016/j.surfcoat.2010.08.151

22. Shan Y., Gao L. Synthesis and characterization of phase controllable ZrO2-carbon nanotube nanocomposites. Nanotechnology. 2005;16(6):625—630. https://doi.org/10.1088/0957-4484/16/6/001

23. Fenech J., Dalbin M., Barnabe A., Bonino J.P.,Ansart F. Sol-gel processing and characterization of (RE-Y)-zirconia powders for thermal barrier coatings. Powder Technology. 2011;208(2):480—487. https://doi.org/10.1016/j.powtec.2010.08.046

24. Chen C.Y., Tseng T.K., Tsai S.C., Lin C.K., Lin H.M. Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceramics International. 2008;34(2):409—416. https://doi.org/10.1016/j.ceramint.2006.10.013

25. Zhang H., Lu H., Zhu Y.,Fan L., Duan R., Zhang M., Wang X. Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders. Powder Technology. 2012;227:9—16. https://doi.org/10.1016/j.powtec.2012.02.007

26. Buinachev S., Mashkovtsev M., Dankova A., Zhirenkina N., Kharisova K. Synthesis of YSZ powders with controlled properties by the CDJP method. Powder Technology. 2022;399:117201. https://doi.org/10.1016/j.powtec.2022.117201

27. Carter G.A., Ogden M.I., Buckley C.E., Maitland C., Paskevicius M. Ammonia-induced precipitation of zirconyl chloride and zirconyl—yttrium chloride solutions under industrially relevant conditions. Powder Technology. 2009;188:222—228. https://doi.org/10.1016/j.powtec.2008.04.087

28. Trovarelli A., Leitenburg C., Boaro M., Dolcet G. The utilization of ceria in industrial catalysis. Catalysis Today. 1999;50: 353—367. https://doi.org/10.1016/S0920-5861(98)00515-X

29. Agarkova E.A., Borik M.A., Bublik V.T., Volkova T.V., Kulebyakin A.V., Kuritsyna I.E., Larina N.A., Lomonova E.E., Milovich F.O., Myzina V.A., Ryabochkina P.A., Tabachkova N.Yu. Effect of the phase composition and local crystal structure on the transport properties of the ZrO2—Y2O3 and ZrO2—Gd2O3 solid solutions. Russian Microelectronics. 2019;48:8:523—530. https://doi.org/10.17073/1609-3577-2018-3-156-165


Review

For citations:


Buinachev S.V., Domashenkov M.A., Mashkovtsev M.A., Polivoda D.O., Zhirenkina N.V. Synthesis and study of the properties of zirconium dioxide powders with different yttrium content. Izvestiya. Non-Ferrous Metallurgy. 2024;(2):44-54. https://doi.org/10.17073/0021-3438-2024-2-44-54

Views: 343


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)