Structure and mechanical properties of Ti2AlNb-based alloy welded joints using keyhole plasma arc welding with subsequent heat treatment
https://doi.org/10.17073/0021-3438-2024-2-16-29
Abstract
Using keyhole plasma arc welding, welded joints of a Ti2AlNb-based alloy, VTI-4, were obtained, and their structure and mechanical properties were studied. It has been established that the dynamic effect of a keyhole arc had a positive effect on the quality of the welded joint; namely, lack of penetration, porosity, and microcracks were eliminated. The welded joint consisted of a fusion zone (FZ), a heat-affected zone (HAZ), and a base metal (BM). Depending on the phase composition and morphology of the obtained phases, the HAZ can be divided into four zones: HAZ1 with large β-phase grains near the melting line, HAZ2 with large β-phase grains + α2, HAZ3 with more fragmented β-phase grains retaining more α2-phase, and HAZ4 with the phase composition β + α2 + O. Subsequent heat treatment (HT: quenching at 920 °C for 2 h, cooling in air, followed by aging at 800 °C for 6 h, cooling in air) preserved the zone structure of the weld but led to the formation of the O-phase within β-grains. The microhardness of the weld in the zone corresponds to 360±15 HV0.2, but after HT, it increased to 382±20 HV0.2. The strength properties of the welded joint after HT were above 90 % of the base metal (σucs = 1120 MPa, σ0.2 = 1090 MPa), while elongation to failure is close to the initial condition (δ = 2.1 %).
Keywords
About the Authors
S. V. NaumovRussian Federation
Stanislav V. Naumov – Cand. Sci. (Eng.), Associate Professor of the Department of Materials Science and Nanotechnology (MSN), Senior Research Scientist of the Laboratory of Bulk Nanostructured Materials (BNM)
85 Pobedy Str., Belgorod 308015
D. O. Panov
Russian Federation
Dmitrii O. Panov – Cand. Sci. (Eng.), Associate Professor of the Department MSN, Senior Research Scientist of the Laboratory BNM
85 Pobedy Str., Belgorod 308015
R. S. Chernichenko
Russian Federation
Ruslan S. Chernichenko – Junior Researcher of the Laboratory BNM
85 Pobedy Str., Belgorod 308015
V. S. Sokolovsky
Russian Federation
Vitaly S. Sokolovsky – Cand. Sci. (Eng.), Research Scientist of the Laboratory BNM
85 Pobedy Str., Belgorod 308015
G. A. Salishchev
Russian Federation
Gennady A. Salishchev – Dr. Sci. (Eng.), Professor of the Department MSN, Head of the Laboratory BNM
85 Pobedy Str., Belgorod 308015
E. B. Alekseev
Russian Federation
Evgeny B. Alekseev – Cand. Sci. (Eng.), Head of the Sector
17 Radio Str., Moscow 105005
Scopus-ID: 56581528500
S. D. Neulybin
Russian Federation
Sergey D. Neulybin – Cand. Sci. (Eng.), Head of the Laboratory of methods for creating and designing systems “Material–Technology–Design”
29 Komsomolskiy Prosp., Perm 614990
D. S. Belinin
Russian Federation
Dmitry S. Belinin – Cand. Sci. (Eng.), Associate Prof. of the Department of Welding, Metrology and Materials Engineering (WMME)
29 Komsomolskiy Prosp., Perm 614990
Yu. D. Shchitsyn
Russian Federation
Yuri D. Shchitsyn – Dr. Sci. (Eng.), Professor, Head of the Department WMME
29 Komsomolskiy Prosp., Perm 614990
V. V. Lukianov
Russian Federation
Vasily V. Lukianov – Cand. Sci. (Eng.), Head of the Department of Complex-Profile Shaping
5 bld. 1 Tramvaynaya Str., Ufa 450027
References
1. Goyal K., Bera C., Sardana N. Temperature-dependent structural, mechanical, and thermodynamic properties of B2-phase Ti2AlNb for aerospace applications. Journal of Materials Science. 2022;57(41):19553—19570. https://doi.org/10.1007/s10853-022-07788-3
2. Shagiev M.R., Galeyev R.M., Valiakhmetov O.R. Ti2AlNbBased intermetallic alloys and composites. Materials Physics and Mechanics. 2017;33(1):12—18. https://doi.org/10.18720/MPM.3312017_2
3. Nandy T.K., Banerjee D. Creep of the orthorhombic phase based on the intermetallic Ti2AlNb. Intermetallics. 2000;8(8):915—928. https://doi.org/10.1016/S0966-9795(00)00059-5
4. Emura S., Araoka A., Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti—22Al—27Nb orthorhombic intermetallic alloy. Scripta Materialia. 2003;48:629—634. https://doi.org/10.1016/S1359-6462(02)00462-1
5. Kim Y.-W., Dimiduk D.M. Progress in the understanding of gamma titanium aluminides. Journal of Minerals, Metals & Materials Society. 1991;43:40—47. https://doi.org/10.1007/BF03221103
6. Kumpfert J., Leyens C. Orthorhombic titanium aluminides: Intermetallics with improved damage tolerance. In: Titanium and Titanium Alloys — Fundamentals and Applications. GmbH & Co.: Wiley—VCH Verlag, 2005. P. 59—88. https://doi.org/10.1002/3527602119.ch3
7. Li Y.-J., Wu A.-P., Li Q., Zhao Y., Zhu R.-C., Wang G.-Q. Effects of welding parameters on weld shape and residual stresses in electron beam welded Ti2AlNb alloy joints. Transactions of Nonferrous Metals Society of China. 2019;29(1):67—76. https://doi.org/10.1016/S1003-6326(18)64916-7
8. Liu X., Shao L., Ji Y., Zhao H., Wan X. Ultrasonic frequency pulse tungsten inert gas welding of Ti2AlNbbased alloy. Chinese Journal of Rare Metals. 2014;38(4): 541—547. https://doi.org/10.13373/j.cnki.cjrm.2014.04.001
9. Shao L., Wu S., Datye A., Zhao H., Petterson M., Peng W. Microstructure and mechanical properties of ultrasonic pulse frequency tungsten inert gas welded Ti— 22Al—25Nb (at.%) alloy butt joint. Journal of Materials Processing Technology. 2018;259:416—423. https://doi.org/10.1016/j.jmatprotec.2018.03.018
10. Bu Z., Ma X., Li R., Wu J., Li J. Effect of pressure on microstructure and mechanical properties of diffusion bonded joints of Ti2AlNb alloy. Journal of Aeronautical Materials. 2023;43:51—58. https://doi.org/10.11868/j.issn.1005-5053.2022.000162
11. Niu T., Jiang B., Zhang N., Wang Y. Microstructure and mechanical properties of Ti—Ti2AlNb interface. Composites and Advanced Materials. 2021;30:1—7. https://doi.org/10.1177/2633366X20929
12. Chen X., Zhang Z., Xie F., Wu X., Ma T., Li W., Sun D. Optimizing the integrity of linear friction welded Ti2AlNb alloys. Metals. 2021;11(5):802. https://doi.org/10.3390/met11050802
13. Cui D., Wu Q., Jin F., Xu C., Wang M., Wang Z., Li J., He F., Li J., Wang J. Heterogeneous deformation behaviors of an inertia friction welded Ti2AlNb joint: an in-situ study. Acta Metallurgica Sinica. 2023;36(4):611—622. https://doi.org/10.1007/s40195-022-01477-5
14. Panov D., Naumov S., Stepanov N., Sokolovsky V., Volokitina E., Kashaev N., Ventzke V., Dinse R., Riekehr S., Povolyaeva E., Nochovnaya N., Alekseev E., Zherebtsov S., Salishchev G. Effect of pre-heating and post-weld heat treatment on structure and mechanical properties of laser beam-welded Ti2AlNb-based joints. Intermetallics. 2022;143:107466. https://doi.org/10.1016/j.intermet.2022.107466
15. Naumov S.V., Panov D.O., Chernichenko R.S., Sokolovsky V.S., Volokitina E.I., Stepanov N.D., Zherebtsov S.V., Alekseev Е.B., Nochovnaya N.A., Salishchev G.A. Structure and mechanical properties of welded joints from alloy based on VTI-4 orthorhombic titanium aluminide produced by pulse laser welding. Izvestiya. Non-Ferrous Metallurgy. 2023;29(2):57—73. https://doi.org/10.17073/0021-3438-2023-2-57-73
16. Lei Z., Zhang K, Zhou H., Ni L., Chen Y. A comparative study of microstructure and tensile properties of Ti2AlNb joints prepared by laser welding and laser-additive welding with the addition of filler powder. Journal of Materials Processing Technology. 2018;255:477—487. https://doi.org/10.1016/j.jmatprotec.2017.12.044
17. Bu Z., Wu J., Ma X., Li Z., Li J. Microstructure and mechanical properties of electron beam welded joints of Ti2AlNb alloy. Journal of Materials Engineering and Performance. 2022;20:5329—5337. https://doi.org/10.1007/s11665-022-07514-9
18. Li L., Fu P., Zhao T., Tang Z., Mao Z. Effect of preheating on the microstructure evolution and mechanical properties of electron beam welded Ti2AlNb alloy. Journal of Materials Engineering and Performance. 2022;32(8): 3648—3657. https://doi.org/10.1007/s11665-022-07346-7
19. Li Y., Zhao Y., Li Q., Wu A., Zhu R., Wang G. Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints. Materials & Design. 2017;114:226—233. https://doi.org/10.1016/j.matdes.2016.11.083
20. Short A.B. Gas tungsten arc welding of α + β titanium alloys: A review. Materials Science and Technology. 2009;25(3):309—324. https://doi.org/10.1179/174328408X389463
21. Li Z., Cui Y., Yu Z., Liu C. In-situ fabrication of Ti2AlNb-based alloy through double-wire arc additive manufacturing. Journal of Alloys and Compounds. 2021;876: 160021. https://doi.org/10.1016/j.jallcom.2021.160021
22. Shchitsyn Yu.D., Tytkin Yu.M. Interaction of a compressed arc with a crater cavity during keyhole plasma arc welding. Svarochnoe рroizvodstvo. 1994;6:32—33. (In Russ.).
23. Stefanescu D.M., Ruxanda R. Solidification structures of titanium alloys. In: ASM Handbook Metallography and Microstructures. 2004. P. 116—126. https://doi.org/10.31399/asm.hb.v09.a0003728
24. Wu J. Xu L., Lu Z., Cui Y., Yang R. Preparation of powder metallurgy Ti—22Al—24Nb—0.5Mo alloys and electron beam welding. Acta Metallurgica Sinica. 2016;52(9): 1070—1078. https://doi.org/10.11900/0412.1961.2016.00019
25. Zhang K., Lei Z., Chen Y., Yang K., Bao Y. Heat treatment of laser-additive welded Ti2AlNb joints: Microstructure and tensile properties. Materials Science and Engineering: A. 2019;744:436—444. https://doi.org/10.1016/j.msea.2018.12.058
26. Zhang K., Ni L., Lei Z., Chen Y., Hu X. Microstructure and tensile properties of laser welded dissimilar Ti— 22Al—27Nb and TA15 joints. The International Journal of Advanced Manufacturing Technology. 2016;87:1685—1692. https://doi.org/10.1007/s00170-016-8579-3
27. Wang L., Sun D., Li H., Gu X., Shen C. Microstructures and mechanical properties of a laser-welded joint of Ti3Al—Nb alloy using pure Nb filler metal. Metals. 2018;8(10):785. https://doi.org/10.3390/met8100785
28. Chen X., Xie F.Q., Ma T.J., Li W.Y., Wu X.Q. Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy. Materials & Design. 2016;94:45—53. https://doi.org/10.1016/j.matdes.2016.01.017
29. Chen W., Chen Z.Y., Wu C.C., Li J.W., Tang Z.Y., Wang Q.J. The effect of annealing on microstructure and tensile properties of Ti—22Al—25Nb electron beam weld joint. Intermetallics. 2016;75:8—14. https://doi.org/10.1016/j.intermet.2016.02.006
30. Jiao X., Kong B., Tao W., Liu G., Ning H. Effects of annealing on microstructure and deformation uniformity of Ti—22Al—24Nb—0.5Mo laser-welded joints. Materials & Design. 2017;130:166—174. https://doi.org/10.1016/j.matdes.2017.05.005
31. Lei Z., Zhou H., Chen Y., Zhang K., Li B. A comparative study of deformation behaviors between laserwelded joints and base metal of Ti—22Al—24.5Nb— 0.5Mo alloy. Journal of Materials Engineering and Performance. 2019;28(8):5009—5020. https://doi.org/10.1007/s11665-019-04224-7
32. Lu B., Yin J., Wang Y., Yang R. Gas tungsten arc welding of Ti2AlNb based alloy sheet. In: Proc. 12th World Conf. Titan (China, Beijing, 19—24 June 2011). 2012. Vol. 1. Р. 816—818.
Review
For citations:
Naumov S.V., Panov D.O., Chernichenko R.S., Sokolovsky V.S., Salishchev G.A., Alekseev E.B., Neulybin S.D., Belinin D.S., Shchitsyn Yu.D., Lukianov V.V. Structure and mechanical properties of Ti2AlNb-based alloy welded joints using keyhole plasma arc welding with subsequent heat treatment. Izvestiya. Non-Ferrous Metallurgy. 2024;(2):16-29. https://doi.org/10.17073/0021-3438-2024-2-16-29