Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Impact of ECAP at 300 °C on the microstructure and mechanical properties of the quenched Zr–2.5%Nb alloy

https://doi.org/10.17073/0021-3438-2024-1-81-92

Abstract

We investigated the microstructure of the Zr–2.5%Nb zirconium alloy after subjecting it to equal-channel angular pressing (ECAP) and found that ECAP at 300 °C increases the strength by 140 to 180 %. Notably, unlike other studies, our alloy did not show complete dissolution of niobium particles, which may be due to the reduced diffusion rates at the lower deformation temperature of 300 °C. Pre-treatment involving quenching before severe plastic deformation was also studied, which developed a lamellar structure introducing additional boundaries that facilitated grain refinement during subsequent ECAP. The strength of the alloy was further enhanced by solid-solution hardening, achieved through the complete dissolution of the Nb particles into the matrix post-quenching. This process resulted in a 2.3-fold increase in yield strength after quenching plus ECAP compared to the initial coarse-grained state.

About the Authors

D. V. Gunderov
Ufa University of Science and Technology; Institute of Molecule and Crystal Physics of the Ufa Federal Research Centre of the RAS
Russian Federation

Dmitry V. Gunderov – Dr. Sci. (Phys.-Math.), Head Researcher of the Institute of Physics of Molecules and Crystals, Сhief Researcher

32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076;

71 Oktyabrya Prosp., Ufa, Republic of Bashkortostan 450054

 



A. G. Stotskiy
Ufa University of Science and Technology
Russian Federation

Andrey G. Stotskiy – Junior Researcher

32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076



S. D. Gunderova
Ufa University of Science and Technology; Institute of Molecule and Crystal Physics of the Ufa Federal Research Centre of the RAS
Russian Federation

Sofia D. Gunderova – Undergraduate Student of the Ufa University of Science and Technology, Research Laboratory Assistant 

32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076;

71 Oktyabrya Prosp., Ufa, Republic of Bashkortostan 450054



V. R. Aubakirоva
Ufa University of Science and Technology
Russian Federation

Veta R. Aubakirova – Cand. Sci. (Eng.), Senior Researcher

32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076



A. Yu. Demin
Ufa University of Science and Technology
Russian Federation

Alexey Yu. Demin – Dr. Sci. (Eng.), Associate Prof., Head of the Department of Electronic Engineering

32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076



References

1. Chopra D., Gulati K., Ivanovski S. Towards clinical translation: optimized fabrication of controlled nanostructures on implant-relevant curved zirconium surfaces. Nanomaterials. 2021;11(4):868. https://doi.org/10.3390/nano11040868

2. Lee D.B.N., Roberts M., Bluchel C.G., Odell R.A. Zirconium: biomedical and nephrological applications. ASAIO Journal. 2010;56:550—556. https://doi.org/10.1097/MAT.0b013e3181e73f20

3. Rosalbino F., Macciò D., Giannoni P., Quarto R., Saccone A. Study of the in vitro corrosion behavior and biocompatibility of Zr—2,5Nb and Zr—1.5Nb—1Ta (at.%) crystalline alloys. Journal of Materials Science: Materials in Medicine. 2011;22:1293—1302. https://doi.org/10.1007/s10856-011-4301-z

4. Головин К.И. Клинико-экспериментальное обоснование ортопедического лечения с применением внутрикостных винтовых имплантатов из циркония: Автореф. дис. канд. мед. наук. М.: Московский государственный медико-стоматологический университет, 2002.

5. AlFarraj A.A., Sukumaran A., Al Amri M.D., Van Oirschot A.B., Jansen J.A. A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology. 2018;106:37—44. https://doi.org/10.1007/s10266-017-0296-3

6. He X., Reichl F.-X., Milz S., Michalke B., Wu X., Sprecher C.M., Yang Y., Gahlert M., Röhling S., Kniha H., Hickel R., Högg C. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dental Materials. 2020;36: 402—412. https://doi.org/10.1016/j.dental.2020.01.013

7. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: fundamentals and applications. 1 st ed. Wiley, 2013.

8. Zhilyaev A.P., Valiev R.Z., Langdon T.G. Ultrafinegrained metallic materials and coatings. Advanced Engineering Materials. 2020;22(10):2001012. https://doi.org/10.1002/adem.202001012

9. Valiev R.Z., Parfenov E.V., Raab G.I., Semenova I.P., Dluhoš L. Bulk nanostructured metals for advanced medical implants and devices. In: IOP Conference Series: Materials Science and Engineering. 5 th International Conference Recent Trends in Structural Materials (14—16 November 2018). 2018;461:012089. https://doi.org/10.1088/1757-899X/461/1/012089

10. Terent’ev V.F., Dobatkin S.V., Nikulin S.A., Kopylov V.I., Prosvirin D.V., Rogachev S.O., Bannykh I.O. Effect of equal-channel angular pressing on the fatigue strength of titanium and a zirconium alloy. Russian Metallurgy (Metally). 2011;201:981—988. https://doi.org/10.1134/S0036029511100119

11. Nikulin S.A., Rozhnov A.B., Rogachev S.O., Khatkevich V.M., Turchenko V.A., Khotulev E.S. Investigation of structure, phase composition, and mechanical properties of Zr—2,5% Nb alloy after ECAP. Materials Letters. 2016;169:223—226. https://doi.org/10.1016/j.matlet.2016.01.148

12. Nikulin S.A., Rogachev S.O., Rozhnov A.B., Gorshenkov M.V., Kopylov V.I., Dobatkin S.V. Resistance of alloy Zr—2,5%Nb with ultrafine-grain structure to stress corrosion cracking. Metal Science and Heat Treatment. 2012;54:407—413. https://doi.org/10.1007/s11041-012-9522-3

13. Kukareko V.A., Kopylov V.I., Kononov A.G., Rogachev S.O., Nikulin S.A., Dobatkin S.V. Structural transformations during heating of a Zr—2,5%Nb alloy subjected to equal-channel angular pressing. Russian Metallurgy (Metally). 2010;2010:642—647. https://doi.org/10.1134/S0036029510070116

14. Gunderov D., Stotskiy A., Lebedev Y., Mukaeva V. Influence of HPT and accumulative high—pressure torsion on the structure and Hv of a zirconium alloy. Metals. 2021;11(4):573. https://doi.org/10.3390/met11040573

15. Chai L., Xia J., Zhi Y., Chen K., Wang T., Song B., Guo N. Strengthening or weakening texture intensity of Zr alloy by modifying cooling rates from α + β region. Materials Chemistry Physics. 2018;213:414—421.

16. Kishore R., Singh R.N., Dey G.K., Sinha T.K. Age hardening of cold-worked Zr—2,5wt%Nb pressure tube alloy. Journal of Nuclear Materials. 1992;187:70—73. https://doi.org/10.1016/0022-3115(92)90320-K

17. Straumal B.B., Zavorotnev Yu.D., Davdyan G.S. High-pressure torsion and phase transformations in metal alloys. Physics and High Pressure Technology. 2022;32(4):5—29. (In Russ.).

18. Glaser A.M., Sundeev R.V., Shalimova A.V., Metlov L.S. Physics of severe plastic deformation. Physics—Uspekhi. 2023;66(1):32—58. https://doi.org/10.3367/UFNr.2021.07.039024

19. Gunderov D.V. Some regularities of amorphization and nanocrystallization at intensive plastic deformation of crystalline and amorphous multicomponent alloys. Investigated in Russia (Electronic journal). 2006;151:1404—1413. (In Russ.).

20. Razumov I.K., Yermakov A.E., Gornostyrev Y.N., Straumal B.B. Nonequilibrium phase transformations in alloys under severe plastic deformation. Physics—Uspekhi. 2020;63:733—757. https://doi.org/10.3367/UFNe.2019.10.038671

21. Teitel I., Metlov L.S., Gunderov D.V., Korznikov A.V. On the nature of structural and phase transformations induced by severe plastic deformations in solids. Physics of Metals and Metallurgy. 2012;113(12):1—8. (In Russ.).

22. Chai L., Xia J., Zhi Y., Chen K., Wang T., Song B., Guo N. Strengthening or weakening texture intensity of Zr alloy by modifying cooling rates from α + β region. Materials Chemistry and Physics. 2018;213:414—421. https://doi.org/10.1016/j.matchemphys.2018.04.044


Review

For citations:


Gunderov D.V., Stotskiy A.G., Gunderova S.D., Aubakirоva V.R., Demin A.Yu. Impact of ECAP at 300 °C on the microstructure and mechanical properties of the quenched Zr–2.5%Nb alloy. Izvestiya. Non-Ferrous Metallurgy. 2024;(1):81-92. https://doi.org/10.17073/0021-3438-2024-1-81-92

Views: 410


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)