Impact of ECAP at 300 °C on the microstructure and mechanical properties of the quenched Zr–2.5%Nb alloy
https://doi.org/10.17073/0021-3438-2024-1-81-92
Abstract
We investigated the microstructure of the Zr–2.5%Nb zirconium alloy after subjecting it to equal-channel angular pressing (ECAP) and found that ECAP at 300 °C increases the strength by 140 to 180 %. Notably, unlike other studies, our alloy did not show complete dissolution of niobium particles, which may be due to the reduced diffusion rates at the lower deformation temperature of 300 °C. Pre-treatment involving quenching before severe plastic deformation was also studied, which developed a lamellar structure introducing additional boundaries that facilitated grain refinement during subsequent ECAP. The strength of the alloy was further enhanced by solid-solution hardening, achieved through the complete dissolution of the Nb particles into the matrix post-quenching. This process resulted in a 2.3-fold increase in yield strength after quenching plus ECAP compared to the initial coarse-grained state.
Keywords
About the Authors
D. V. GunderovRussian Federation
Dmitry V. Gunderov – Dr. Sci. (Phys.-Math.), Head Researcher of the Institute of Physics of Molecules and Crystals, Сhief Researcher
32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076;
71 Oktyabrya Prosp., Ufa, Republic of Bashkortostan 450054
A. G. Stotskiy
Russian Federation
Andrey G. Stotskiy – Junior Researcher
32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076
S. D. Gunderova
Russian Federation
Sofia D. Gunderova – Undergraduate Student of the Ufa University of Science and Technology, Research Laboratory Assistant
32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076;
71 Oktyabrya Prosp., Ufa, Republic of Bashkortostan 450054
V. R. Aubakirоva
Russian Federation
Veta R. Aubakirova – Cand. Sci. (Eng.), Senior Researcher
32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076
A. Yu. Demin
Russian Federation
Alexey Yu. Demin – Dr. Sci. (Eng.), Associate Prof., Head of the Department of Electronic Engineering
32 Zaki Validi Str., Ufa, Republic of Bashkortostan 450076
References
1. Chopra D., Gulati K., Ivanovski S. Towards clinical translation: optimized fabrication of controlled nanostructures on implant-relevant curved zirconium surfaces. Nanomaterials. 2021;11(4):868. https://doi.org/10.3390/nano11040868
2. Lee D.B.N., Roberts M., Bluchel C.G., Odell R.A. Zirconium: biomedical and nephrological applications. ASAIO Journal. 2010;56:550—556. https://doi.org/10.1097/MAT.0b013e3181e73f20
3. Rosalbino F., Macciò D., Giannoni P., Quarto R., Saccone A. Study of the in vitro corrosion behavior and biocompatibility of Zr—2,5Nb and Zr—1.5Nb—1Ta (at.%) crystalline alloys. Journal of Materials Science: Materials in Medicine. 2011;22:1293—1302. https://doi.org/10.1007/s10856-011-4301-z
4. Головин К.И. Клинико-экспериментальное обоснование ортопедического лечения с применением внутрикостных винтовых имплантатов из циркония: Автореф. дис. канд. мед. наук. М.: Московский государственный медико-стоматологический университет, 2002.
5. AlFarraj A.A., Sukumaran A., Al Amri M.D., Van Oirschot A.B., Jansen J.A. A comparative study of the bone contact to zirconium and titanium implants after 8 weeks of implantation in rabbit femoral condyles. Odontology. 2018;106:37—44. https://doi.org/10.1007/s10266-017-0296-3
6. He X., Reichl F.-X., Milz S., Michalke B., Wu X., Sprecher C.M., Yang Y., Gahlert M., Röhling S., Kniha H., Hickel R., Högg C. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dental Materials. 2020;36: 402—412. https://doi.org/10.1016/j.dental.2020.01.013
7. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: fundamentals and applications. 1 st ed. Wiley, 2013.
8. Zhilyaev A.P., Valiev R.Z., Langdon T.G. Ultrafinegrained metallic materials and coatings. Advanced Engineering Materials. 2020;22(10):2001012. https://doi.org/10.1002/adem.202001012
9. Valiev R.Z., Parfenov E.V., Raab G.I., Semenova I.P., Dluhoš L. Bulk nanostructured metals for advanced medical implants and devices. In: IOP Conference Series: Materials Science and Engineering. 5 th International Conference Recent Trends in Structural Materials (14—16 November 2018). 2018;461:012089. https://doi.org/10.1088/1757-899X/461/1/012089
10. Terent’ev V.F., Dobatkin S.V., Nikulin S.A., Kopylov V.I., Prosvirin D.V., Rogachev S.O., Bannykh I.O. Effect of equal-channel angular pressing on the fatigue strength of titanium and a zirconium alloy. Russian Metallurgy (Metally). 2011;201:981—988. https://doi.org/10.1134/S0036029511100119
11. Nikulin S.A., Rozhnov A.B., Rogachev S.O., Khatkevich V.M., Turchenko V.A., Khotulev E.S. Investigation of structure, phase composition, and mechanical properties of Zr—2,5% Nb alloy after ECAP. Materials Letters. 2016;169:223—226. https://doi.org/10.1016/j.matlet.2016.01.148
12. Nikulin S.A., Rogachev S.O., Rozhnov A.B., Gorshenkov M.V., Kopylov V.I., Dobatkin S.V. Resistance of alloy Zr—2,5%Nb with ultrafine-grain structure to stress corrosion cracking. Metal Science and Heat Treatment. 2012;54:407—413. https://doi.org/10.1007/s11041-012-9522-3
13. Kukareko V.A., Kopylov V.I., Kononov A.G., Rogachev S.O., Nikulin S.A., Dobatkin S.V. Structural transformations during heating of a Zr—2,5%Nb alloy subjected to equal-channel angular pressing. Russian Metallurgy (Metally). 2010;2010:642—647. https://doi.org/10.1134/S0036029510070116
14. Gunderov D., Stotskiy A., Lebedev Y., Mukaeva V. Influence of HPT and accumulative high—pressure torsion on the structure and Hv of a zirconium alloy. Metals. 2021;11(4):573. https://doi.org/10.3390/met11040573
15. Chai L., Xia J., Zhi Y., Chen K., Wang T., Song B., Guo N. Strengthening or weakening texture intensity of Zr alloy by modifying cooling rates from α + β region. Materials Chemistry Physics. 2018;213:414—421.
16. Kishore R., Singh R.N., Dey G.K., Sinha T.K. Age hardening of cold-worked Zr—2,5wt%Nb pressure tube alloy. Journal of Nuclear Materials. 1992;187:70—73. https://doi.org/10.1016/0022-3115(92)90320-K
17. Straumal B.B., Zavorotnev Yu.D., Davdyan G.S. High-pressure torsion and phase transformations in metal alloys. Physics and High Pressure Technology. 2022;32(4):5—29. (In Russ.).
18. Glaser A.M., Sundeev R.V., Shalimova A.V., Metlov L.S. Physics of severe plastic deformation. Physics—Uspekhi. 2023;66(1):32—58. https://doi.org/10.3367/UFNr.2021.07.039024
19. Gunderov D.V. Some regularities of amorphization and nanocrystallization at intensive plastic deformation of crystalline and amorphous multicomponent alloys. Investigated in Russia (Electronic journal). 2006;151:1404—1413. (In Russ.).
20. Razumov I.K., Yermakov A.E., Gornostyrev Y.N., Straumal B.B. Nonequilibrium phase transformations in alloys under severe plastic deformation. Physics—Uspekhi. 2020;63:733—757. https://doi.org/10.3367/UFNe.2019.10.038671
21. Teitel I., Metlov L.S., Gunderov D.V., Korznikov A.V. On the nature of structural and phase transformations induced by severe plastic deformations in solids. Physics of Metals and Metallurgy. 2012;113(12):1—8. (In Russ.).
22. Chai L., Xia J., Zhi Y., Chen K., Wang T., Song B., Guo N. Strengthening or weakening texture intensity of Zr alloy by modifying cooling rates from α + β region. Materials Chemistry and Physics. 2018;213:414—421. https://doi.org/10.1016/j.matchemphys.2018.04.044
Review
For citations:
Gunderov D.V., Stotskiy A.G., Gunderova S.D., Aubakirоva V.R., Demin A.Yu. Impact of ECAP at 300 °C on the microstructure and mechanical properties of the quenched Zr–2.5%Nb alloy. Izvestiya. Non-Ferrous Metallurgy. 2024;(1):81-92. https://doi.org/10.17073/0021-3438-2024-1-81-92