Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Mechanical and tribological characteristics of nickel-rich CoCrCuxFeNi2 high entropy-alloys

https://doi.org/10.17073/0021-3438-2024-1-55-69

Abstract

This research explores the potential to enhance the copper solubility limit in high-entropy alloys (HEAs) within the CoCrCuFeNi system by increasing the nickel content twofold and applying additional heat treatment. The CoCrCuxFeNi2 HEAs were synthesized through mechanical alloying of elemental powders followed by hot pressing. The study investigated the microstructure and phase composition of CoCrCuxFeNi2 HEAs in relation to varying copper concentrations (x = 0; 0.25; 0.5; 0.75; 1.0). The evaluation of the alloy matrix's chemical composition, which is based on the FCC solid solution, enabled the determination of copper solubility. It was found that doubling the nickel content, relative to the equiatomic ratio, facilitated the formation of HEAs with a homogenous FCC structure for copper concentrations up to x ≤ 0.75. Further heat treatment of these HEAs resulted in an enhanced copper solubility of up to 17.5 at.%. The mechanical and tribological properties of CoCrCuxFeNiy HEAs were also assessed, revealing significant improvements in tensile strength (ranging from 910 to 1045 MPa) and hardness (285–395 HV) for the CoCrCuxFeNi2 alloys. Despite the increased copper solubility limit, the heat treatment process caused a decline in mechanical properties by 35–50 %, attributed to grain size enlargement to 5.5 μm. The CoCrCu0.75FeNi2 and CoCrCuFeNi2 alloys exhibited the lowest wear rates when tested against Al2O3 counterbody, with wear rates of 1,58·10–5 and 1,48·10–5 mm3/(N·m), respectively.

About the Authors

A. D. Fedotov
National University of Science and Technology «MISIS»
Russian Federation

Alexander D. Fedotov – Postgraduate Student, Scientific
Project Engineer, Department of Powder Metallurgy and Functional Coatings (PM&FC)

4 Bld. 1 Leninskiy Prosp., Moscow 119049



S. K. Mukanov
National University of Science and Technology «MISIS»
Russian Federation

Samat K. Mukanov – Cand. Sci. (Eng.), Research Assistant, Laboratory «In situ diagnostics of structural transformations» of Scientific-Educational Center

4 Bld. 1 Leninskiy Prosp., Moscow 119049



B. Yu. Romanenko
National University of Science and Technology «MISIS»
Russian Federation

Bogdan Yu. Romanenko – Graduate Student, Training Master, Department of PM&FC

4 Bld. 1 Leninskiy Prosp., Moscow 119049



P. A. Loginov
National University of Science and Technology «MISIS»
Russian Federation

Pavel A. Loginov – Cand. Sci. (Eng.), Assistant Рrof. of NUST MISIS; Senior Researcher at the Laboratory «In situ diagnostics of structural transformations» of Scientific-Educational Center

4 Bld. 1 Leninskiy Prosp., Moscow 119049



M. Ya. Bychkova
National University of Science and Technology «MISIS»
Russian Federation

Marina Ya. Bychkova – Сand. Sci. (Eng.), Assistant Рrof. Of NUST MISIS; Researcher Researcher at the Laboratory «In situ diagnostics of structural transformations» of Scientific-Educational Center

4 Bld. 1 Leninskiy Prosp., Moscow 119049



S. I. Rupasov
National University of Science and Technology «MISIS»
Russian Federation

Sergey I. Rupasov – Leading Expert of the scientific project, Department of PM&FC

4 Bld. 1 Leninskiy Prosp., Moscow 119049



References

1. Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal metallothermic SHS of cast Co—Cr—Fe—Ni—Mn—(Х) alloys. Russian Journal of Non-Ferrous Metals. 2020;61(4):436—445. https://doi.org/10.3103/S1067821220040070

2. Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal SHS metallurgy of cast Co— Cr—Fe—Ni—Mn high-entropy alloys strengthened by precipitates based on Mo and Nb borides and silicides. Physical Mesomechanics. 2021;24:692—700. https://doi.org/10.1134/S1029959921060072

3. Panina E.S., Yurchenko N.Y., Tozhibaev A.A., Mishunin M.V., Zherebtsov S.V., Stepanov N.D. A study of the structure and mechanical properties of Nb—Mo—Co—X (X = Hf, Zr, Ti) refractory high-entropy alloys. Physical Mesomechanics. 2023;26:666—677. https://doi.org/10.1134/S1029959923060061

4. Gromov V.E., Shlyarova Yu.A., Konovalov S.V., Vorob’ev S.V., Peregudov O.A. Application of high-entropy alloys. Izvestiya. Ferrous Metallurgy. 2021;64(10): 747—754. (In Russ.). https://doi.org/10.17073/0368-0797-2021-10-747-754

5. Jiaojiao Yia, Lin Yang, Mingqin Xu, Lu Wang. Investigation of a novel CoCrCuNiTi high entropy alloy on microstructure and mechanical properties. Russian Journal of Non-Ferrous Metals. 2021;62:197—205. https://doi.org/10.3103/S1067821221020073

6. Rao K.R., Alshgari R.A., Bahajjaj A.A.A., Chakraborty S., Sinha S.K. Effects of nano scale Y2O3 additions on microstructural stability and mechanical properties of equiatomic CoCrCuFeNi based high entropy alloys. Materials Chemistry and Physics. 2023;296:127325. https://doi.org/10.1016/j.matchemphys.2023.127325

7. Kuptsov K.A., Antonyuk M.N., Sheveyko A.N., Bondarev A.V., Ignatov S.G., Slukin P.V., Dwivedi P., Fraile A., Polcar T., Shtansky D.V.. High-entropy Fe—Cr—Ni—Co—(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications. Surface and Coatings Technology. 2023;453:129136. https://doi.org/10.1016/j.surfcoat.2022.129136

8. Huang K., Chen L., Lin X., Huang H., Tang S., Du F. Wear and corrosion resistance of Al 0.5 CoCrCuFeNi high-entropy alloy coating deposited on AZ91D magnesium alloy by laser cladding. Entropy. 2018;20(12):915. https://doi.org/10.3390/e20120915

9. Changqing Shu, Zhengjun Yao, Xiaolin Li, Wenbo Du, Xuewei Tao, Hemei Yang. Microstructure and wear mechanism of CoCrCuFeNiVx high entropy alloy by sintering and electron beam remelting. Physica B: Condensed Matter. 2022;638:413834. https://doi.org/10.1016/j.physb.2022.413834

10. Kamalakannan R., DineshKumar K., NarenRaj K. The sliding wear behavior of CrCuFeNi alloyed with various combinations of cobalt. Materials Today: Proceedings. 2022;50(5):1814—1817. https://doi.org/10.1016/j.matpr.2021.09.211

11. Verma A., Chauhan L., Kumar T.S., Singh Prashant Kumar, Dommeti Satya Gowtam, Thangaraju Shanmugasundaram. Laser cladding of CoCrCuFeNi and CoCrFeNi high-entropy alloys on DMR 249A steel: Corrosion, wear and antibacterial behaviour. The Journal of the Minerals, Metals and Materials Society (TMS). 2023;75(7):2701—2713. https://doi.org/10.1007/s11837-023-05861-z

12. Verma A., Tarate P., Abhyankar A.C., Mohape M.R., Gowtam D.S., Deshmukh V.P., Shanmugasundaram T. High temperature wear in CoCrFeNiCu x high entropy alloys: The role of Cu. Scripta Materialia. 2019;171:28—31. https://doi.org/10.1016/j.scriptamat.2018.10.007

13. Yubin Huang, Yongle Hu, Mingjun Zhang, Cong Mao, Yonggang Tong, Jian Zhang, Kangwei Li, Kaiming Wang. On the enhanced wear resistance of laser-clad CoCrCuFeNiTi x high-entropy alloy coatings at elevated temperature. Tribology International. 2022; 174:107767. https://doi.org/10.1016/j.triboint.2022.107767

14. Yang Gao, Haibo Xiao, Bin Liu, Yong Liu. Enhanced drilling performance of impregnated diamond bits by introducing a novel HEA binder phase. International Journal of Refractory Metals and Hard Materials. 2024;118:106449. https://doi.org/10.1016/j.ijrmhm.2023.106449

15. Loginov P.A., Fedotov A.D., Mukanov S.K., Manakova O.S., Zaitsev A.A., Akhmetov A.S., Rupasov S.I., Levashov E.A. Manufacturing of metal—diamond composites with high-strength CoCrCu x FeNi high-entropy alloy used as a binder. Materials. 2023;16(3):1285 https://doi.org/10.3390/ma16031285

16. Takeshi Nagase, Philip D. Rack, Joo Hyon Noh, Takeshi Egami. Insitu TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics. 2015;59:32—42. https://doi.org/10.1016/j.intermet.2014.12.007

17. Mukanov S.K., Loginov P.A., Fedotov A.D., Bychkova M.Ya., Antonyuk M.N., Levashov E.A. The effect of copper on the microstructure, wear and corrosion resistance of CoCrCuFeNi high-entropy alloys manufactured by powder metallurgy. Materials. 2023;16(3):1178. https://doi.org/10.3390/ma16031178

18. Shkodich N.F., Kovalev I.D., Kuskov K.V., Kovalev D.Yu., Vergunova Yu.S., Scheck Yu.B., Vadchenko S.G., Politano O., Baras F., Rogachev A.S. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy. Journal of Alloys and Compounds. 2022;893:161839. https://doi.org/10.1016/j.jallcom.2021.161839

19. Moghaddam A.O., Samodurova M.N., Pashkeev K., Doubenskaia M., Sova A., Trofimov E.A. A novel intermediate temperature self-lubricating CoCrCu 1-x FeNi x high entropy alloy fabricated by direct laser cladding. Tribology International. 2021;156:106857. https://doi.org/10.1016/j.triboint.2021.106857

20. Peng Jian, Li Zi-yong, Ji Xin-bo, Sun Yan-le, Fu Li-ming, Shan Ai-dang. Decomposition kinetics of carbon-doped FeCoCrNiMn high-entropy alloy at intermediate temperature. Transactions of Nonferrous Metals Society of China. 2020;30(7):1884—1894. https://doi.org/10.1016/S1003-6326(20)65347-X

21. Dabrowa J., Cieslak G., Stygar M., Mroczka K., Berent K., Kulik T., Danielewski M. Influence of Cu content on high temperature oxidation behavior of AlCoCrCu x FeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017; 84:52—61. https://doi.org/10.1016/j.intermet.2016.12.015

22. Li Cheng, Xue Yun-fei, Hua Mu-tian, Cao Tang-qing, Ma Li-li, Wang Lu. Microstructure and mechanical properties of Al x Si 0.2 CrFeCoNiCu 1-x high-entropy alloys. Materials and Design. 2016;90:601—609. https://doi.org/10.1016/j.matdes.2015.11.013

23. Lin C.M., Tsai H.L. Equilibrium phase of high-entropy FeCoNiCrCu 0.5 alloy at elevated temperature. Journal of Alloys and Compounds. 2010;489(1):30—35. https://doi.org/10.1016/j.jallcom.2009.09.041

24. Lin C.M., Tsai H.-L. Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu 0.5 alloy. Materials Chemistry and Physics. 2011;128(1-2):50—56. https://doi.org/10.1016/j.matchemphys.2011.02.022

25. Fangyan Liu, Qiang Song, Ruirun Chen, Canming Wang, Jiawei Sun. Effect of Co, Ni, Cu content on phase composition, microstructure and corrosion resistance of Co 1-x CrFeNi 1+x Cu y series high-entropy alloys. Vacuum. 2013;210:111830. https://doi.org/10.1016/j.vacuum.2023.111830

26. Zhu Z.G., Ma K.H., Wang Q., Shek C.H. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi—(Mn/Al/Cu) high entropy alloys. Intermetallics. 2016;79:1—11. https://doi.org/10.1016/j.intermet.2016.09.003

27. Qiang Hu, Hai-ling Wang, Li-hua Qian, Liang-cai Zeng, Qiang Wang, Xin-wang Liu. Effects of Cu additions on microstructure and mechanical properties of as-cast CrFeCoNiCu x high-entropy alloy. Transactions of Nonferrous Metals Society of China. 2023;33(6):1803—1813. https://doi.org/10.1016/S1003-6326(23)66223-5

28. Du C., Hu L., Pan Q., Chen K., Zhou P., Wang G. Effect of Cu on the strengthening and embrittling of an FeCoNiCr—xCu HEA. Materials Science and Engineering: A. 2023;832:142413. https://doi.org/10.1016/j.msea.2021.142413

29. Fiocchi Jacopo, Casati Riccardo, Tuissi Ausonio, Biffi Carlo Alberto. Laser beam welding of CoCuFeMnNi high entropy alloy: Processing, microstructure, and mechanical properties. Advanced Engineering Materials. 2022;24(10):202200523. https://doi.org/10.1002/adem.202200523

30. Seung Min Oh, Sun Ig Hong. Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys. Materials Chemistry and Physics. 2018;210:120—125. https://doi.org/10.1016/j.matchemphys.2017.09.010

31. Fei Liang, Ao Meng, Yixing Sun, Zhaoshuo Chen, Zhouwen Jiang, Yaping Zhang, Yong Zhang, Yuntian Zhu, Xiang Chen. A novel wear-resistant Ni-based superalloy via high Cr-induced subsurface nanotwins and heterogeneous composite glaze layer at elevated temperatures. Tribology International. 2023;183:108383. https://doi.org/10.1016/j.triboint.2023.108383

32. Zhuo Cheng, Lu Yang, Zhikun Huang, Tian Wan, Mingyu Zhu, Fuzeng Ren. Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution. Wear. 2021;474-475:203755. https://doi.org/10.1016/j.wear.2021.203755

33. Qiang Wang, Qiang Hu, Hailing Wang, Liangcai Zeng. Investigations on the microstructures and tribological behaviors of as-cast CrFeCoNiCu x high entropy alloys. Intermetallics. 2023;157:107886. https://doi.org/10.1016/j.intermet.2023.107886


Review

For citations:


Fedotov A.D., Mukanov S.K., Romanenko B.Yu., Loginov P.A., Bychkova M.Ya., Rupasov S.I. Mechanical and tribological characteristics of nickel-rich CoCrCuxFeNi2 high entropy-alloys. Izvestiya. Non-Ferrous Metallurgy. 2024;(1):55-69. https://doi.org/10.17073/0021-3438-2024-1-55-69

Views: 393


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)