Механические и трибологические свойства высокоэнтропийных сплавов CoCrCuxFeNi2 с высоким содержанием никеля
https://doi.org/10.17073/0021-3438-2024-1-55-69
Аннотация
Работа посвящена изучению возможности повышения предела растворимости меди в высокоэнтропийных сплавах (ВЭС) системы CoCrCuFeNi путем двукратного увеличения концентрации никеля и проведения дополнительной термической обработки. ВЭС CoCrCuxFeNi2 изготовлены механическим легированием элементных порошковых смесей и их последующим горячим прессованием. Исследованы микроструктура и фазовый состав ВЭС CoCrCuxFeNi2 в зависимости от концентрации Cu (x = 0; 0,25; 0,5; 0,75; 1,0). Анализ химического состава матрицы сплава на основе ГЦК твердого раствора позволил определить растворимость меди. Показано, что двукратное (относительно эквиатомного) содержание никеля способствовало получению ВЭС с однофазной ГЦК-структурой при x ≤ 0,75. Последующая термическая обработка ВЭС привела к увеличению растворимости меди до 17,5 ат.%. Проведены испытания механических и трибологических свойств ВЭС CoCrCuxFeNiy. В сплавах CoCrCuxFeNi2 достигнут высокий уровень прочности при растяжении (от 910 до 1045 МПа) и твердости (285–395 HV). Несмотря на повышение предела растворимости меди, термическая обработка привела к понижению механических свойств на 35–50 % из-за увеличения размера зерен до 5,5 мкм. Минимальным приведенным износом при трении в паре с контртелом из Al2O3 обладают сплавы CoCrCu0,75FeNi2 и CoCrCuFeNi2 (1,58·10–5 и 1,48·10–5 мм3/(Н·м) соответственно).
Ключевые слова
Об авторах
А. Д. ФедотовРоссия
Александр Дмитриевич Федотов – аспирант, инженер
научного проекта, кафедра порошковой металлургии
и функциональных покрытий (ПМиФП)
119049, г. Москва, Ленинский пр-т, 4, стр. 1
С. К. Муканов
Россия
Самат Куандыкович Муканов – к.т.н., мл. науч. сотрудник, лаборатория «In situ диагностика структурных превращений»
119049, г. Москва, Ленинский пр-т, 4, стр. 1
Б. Ю. Романенко
Россия
Богдан Юрьевич Романенко – магистр, учебный мастер, кафедра ПМиФП
119049, г. Москва, Ленинский пр-т, 4, стр. 1
П. А. Логинов
Россия
Павел Александрович Логинов – к.т.н., доцент НИТУ
МИСИС, ст. науч. сотрудник лаборатории «In situ диагностика структурных превращений»
119049, г. Москва, Ленинский пр-т, 4, стр. 1
М. Я. Бычкова
Россия
Марина Яковлевна Бычкова – к.т.н., доцент, науч. сотрудник
119049, г. Москва, Ленинский пр-т, 4, стр. 1
С. И. Рупасов
Россия
Сергей Иванович Рупасов – вед. эксперт научного проекта, кафедра ПМиФП
119049, г. Москва, Ленинский пр-т, 4, стр. 1
Список литературы
1. Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal metallothermic SHS of cast Co—Cr—Fe—Ni—Mn—(Х) alloys. Russian Journal of Non-Ferrous Metals. 2020;61(4):436—445. https://doi.org/10.3103/S1067821220040070
2. Sanin V.N., Ikornikov D.M., Golosova O.A., Andreev D.E., Yukhvid V.I. Centrifugal SHS metallurgy of cast Co— Cr—Fe—Ni—Mn high-entropy alloys strengthened by precipitates based on Mo and Nb borides and silicides. Physical Mesomechanics. 2021;24:692—700. https://doi.org/10.1134/S1029959921060072
3. Panina E.S., Yurchenko N.Y., Tozhibaev A.A., Mishunin M.V., Zherebtsov S.V., Stepanov N.D. A study of the structure and mechanical properties of Nb—Mo—Co—X (X = Hf, Zr, Ti) refractory high-entropy alloys. Physical Mesomechanics. 2023;26:666—677. https://doi.org/10.1134/S1029959923060061
4. Громов В.Е., Шляпова Ю.А., Коновалов С.В., Воробьев С.В., Перегудов О.А. Применение высокоэнтропийных сплавов. Известия высших учебных заведений. Черная металургия. 2021;64(10):747—754. https://doi.org/10.17073/0368-0797-2021-10-747-754
5. Jiaojiao Yia, Lin Yang, Mingqin Xu, Lu Wang. Investigation of a novel CoCrCuNiTi high entropy alloy on microstructure and mechanical properties. Russian Journal of Non-Ferrous Metals. 2021;62:197—205. https://doi.org/10.3103/S1067821221020073
6. Rao K.R., Alshgari R.A., Bahajjaj A.A.A., Chakraborty S., Sinha S.K. Effects of nano scale Y2O3 additions on microstructural stability and mechanical properties of equiatomic CoCrCuFeNi based high entropy alloys. Materials Chemistry and Physics. 2023;296:127325. https://doi.org/10.1016/j.matchemphys.2023.127325
7. Kuptsov K.A., Antonyuk M.N., Sheveyko A.N., Bondarev A.V., Ignatov S.G., Slukin P.V., Dwivedi P., Fraile A., Polcar T., Shtansky D.V.. High-entropy Fe—Cr—Ni—Co—(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications. Surface and Coatings Technology. 2023;453:129136. https://doi.org/10.1016/j.surfcoat.2022.129136
8. Huang K., Chen L., Lin X., Huang H., Tang S., Du F. Wear and corrosion resistance of Al 0.5 CoCrCuFeNi high-entropy alloy coating deposited on AZ91D magnesium alloy by laser cladding. Entropy. 2018;20(12):915. https://doi.org/10.3390/e20120915
9. Changqing Shu, Zhengjun Yao, Xiaolin Li, Wenbo Du, Xuewei Tao, Hemei Yang. Microstructure and wear mechanism of CoCrCuFeNiVx high entropy alloy by sintering and electron beam remelting. Physica B: Condensed Matter. 2022;638:413834. https://doi.org/10.1016/j.physb.2022.413834
10. Kamalakannan R., DineshKumar K., NarenRaj K. The sliding wear behavior of CrCuFeNi alloyed with various combinations of cobalt. Materials Today: Proceedings. 2022;50(5):1814—1817. https://doi.org/10.1016/j.matpr.2021.09.211
11. Verma A., Chauhan L., Kumar T.S., Singh Prashant Kumar, Dommeti Satya Gowtam, Thangaraju Shanmugasundaram. Laser cladding of CoCrCuFeNi and CoCrFeNi high-entropy alloys on DMR 249A steel: Corrosion, wear and antibacterial behaviour. The Journal of the Minerals, Metals and Materials Society (TMS). 2023;75(7):2701—2713. https://doi.org/10.1007/s11837-023-05861-z
12. Verma A., Tarate P., Abhyankar A.C., Mohape M.R., Gowtam D.S., Deshmukh V.P., Shanmugasundaram T. High temperature wear in CoCrFeNiCu x high entropy alloys: The role of Cu. Scripta Materialia. 2019;171:28—31. https://doi.org/10.1016/j.scriptamat.2018.10.007
13. Yubin Huang, Yongle Hu, Mingjun Zhang, Cong Mao, Yonggang Tong, Jian Zhang, Kangwei Li, Kaiming Wang. On the enhanced wear resistance of laser-clad CoCrCuFeNiTi x high-entropy alloy coatings at elevated temperature. Tribology International. 2022; 174:107767. https://doi.org/10.1016/j.triboint.2022.107767
14. Yang Gao, Haibo Xiao, Bin Liu, Yong Liu. Enhanced drilling performance of impregnated diamond bits by introducing a novel HEA binder phase. International Journal of Refractory Metals and Hard Materials. 2024;118:106449. https://doi.org/10.1016/j.ijrmhm.2023.106449
15. Loginov P.A., Fedotov A.D., Mukanov S.K., Manakova O.S., Zaitsev A.A., Akhmetov A.S., Rupasov S.I., Levashov E.A. Manufacturing of metal—diamond composites with high-strength CoCrCu x FeNi high-entropy alloy used as a binder. Materials. 2023;16(3):1285 https://doi.org/10.3390/ma16031285
16. Takeshi Nagase, Philip D. Rack, Joo Hyon Noh, Takeshi Egami. Insitu TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics. 2015;59:32—42. https://doi.org/10.1016/j.intermet.2014.12.007
17. Mukanov S.K., Loginov P.A., Fedotov A.D., Bychkova M.Ya., Antonyuk M.N., Levashov E.A. The effect of copper on the microstructure, wear and corrosion resistance of CoCrCuFeNi high-entropy alloys manufactured by powder metallurgy. Materials. 2023;16(3):1178. https://doi.org/10.3390/ma16031178
18. Shkodich N.F., Kovalev I.D., Kuskov K.V., Kovalev D.Yu., Vergunova Yu.S., Scheck Yu.B., Vadchenko S.G., Politano O., Baras F., Rogachev A.S. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy. Journal of Alloys and Compounds. 2022;893:161839. https://doi.org/10.1016/j.jallcom.2021.161839
19. Moghaddam A.O., Samodurova M.N., Pashkeev K., Doubenskaia M., Sova A., Trofimov E.A. A novel intermediate temperature self-lubricating CoCrCu 1-x FeNi x high entropy alloy fabricated by direct laser cladding. Tribology International. 2021;156:106857. https://doi.org/10.1016/j.triboint.2021.106857
20. Peng Jian, Li Zi-yong, Ji Xin-bo, Sun Yan-le, Fu Li-ming, Shan Ai-dang. Decomposition kinetics of carbon-doped FeCoCrNiMn high-entropy alloy at intermediate temperature. Transactions of Nonferrous Metals Society of China. 2020;30(7):1884—1894. https://doi.org/10.1016/S1003-6326(20)65347-X
21. Dabrowa J., Cieslak G., Stygar M., Mroczka K., Berent K., Kulik T., Danielewski M. Influence of Cu content on high temperature oxidation behavior of AlCoCrCu x FeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics. 2017; 84:52—61. https://doi.org/10.1016/j.intermet.2016.12.015
22. Li Cheng, Xue Yun-fei, Hua Mu-tian, Cao Tang-qing, Ma Li-li, Wang Lu. Microstructure and mechanical properties of Al x Si 0.2 CrFeCoNiCu 1-x high-entropy alloys. Materials and Design. 2016;90:601—609. https://doi.org/10.1016/j.matdes.2015.11.013
23. Lin C.M., Tsai H.L. Equilibrium phase of high-entropy FeCoNiCrCu 0.5 alloy at elevated temperature. Journal of Alloys and Compounds. 2010;489(1):30—35. https://doi.org/10.1016/j.jallcom.2009.09.041
24. Lin C.M., Tsai H.-L. Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu 0.5 alloy. Materials Chemistry and Physics. 2011;128(1-2):50—56. https://doi.org/10.1016/j.matchemphys.2011.02.022
25. Fangyan Liu, Qiang Song, Ruirun Chen, Canming Wang, Jiawei Sun. Effect of Co, Ni, Cu content on phase composition, microstructure and corrosion resistance of Co 1-x CrFeNi 1+x Cu y series high-entropy alloys. Vacuum. 2013;210:111830. https://doi.org/10.1016/j.vacuum.2023.111830
26. Zhu Z.G., Ma K.H., Wang Q., Shek C.H. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi—(Mn/Al/Cu) high entropy alloys. Intermetallics. 2016;79:1—11. https://doi.org/10.1016/j.intermet.2016.09.003
27. Qiang Hu, Hai-ling Wang, Li-hua Qian, Liang-cai Zeng, Qiang Wang, Xin-wang Liu. Effects of Cu additions on microstructure and mechanical properties of as-cast CrFeCoNiCu x high-entropy alloy. Transactions of Nonferrous Metals Society of China. 2023;33(6):1803—1813. https://doi.org/10.1016/S1003-6326(23)66223-5
28. Du C., Hu L., Pan Q., Chen K., Zhou P., Wang G. Effect of Cu on the strengthening and embrittling of an FeCoNiCr—xCu HEA. Materials Science and Engineering: A. 2023;832:142413. https://doi.org/10.1016/j.msea.2021.142413
29. Fiocchi Jacopo, Casati Riccardo, Tuissi Ausonio, Biffi Carlo Alberto. Laser beam welding of CoCuFeMnNi high entropy alloy: Processing, microstructure, and mechanical properties. Advanced Engineering Materials. 2022;24(10):202200523. https://doi.org/10.1002/adem.202200523
30. Seung Min Oh, Sun Ig Hong. Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys. Materials Chemistry and Physics. 2018;210:120—125. https://doi.org/10.1016/j.matchemphys.2017.09.010
31. Fei Liang, Ao Meng, Yixing Sun, Zhaoshuo Chen, Zhouwen Jiang, Yaping Zhang, Yong Zhang, Yuntian Zhu, Xiang Chen. A novel wear-resistant Ni-based superalloy via high Cr-induced subsurface nanotwins and heterogeneous composite glaze layer at elevated temperatures. Tribology International. 2023;183:108383. https://doi.org/10.1016/j.triboint.2023.108383
32. Zhuo Cheng, Lu Yang, Zhikun Huang, Tian Wan, Mingyu Zhu, Fuzeng Ren. Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution. Wear. 2021;474-475:203755. https://doi.org/10.1016/j.wear.2021.203755
33. Qiang Wang, Qiang Hu, Hailing Wang, Liangcai Zeng. Investigations on the microstructures and tribological behaviors of as-cast CrFeCoNiCu x high entropy alloys. Intermetallics. 2023;157:107886. https://doi.org/10.1016/j.intermet.2023.107886
Рецензия
Для цитирования:
Федотов А.Д., Муканов С.К., Романенко Б.Ю., Логинов П.А., Бычкова М.Я., Рупасов С.И. Механические и трибологические свойства высокоэнтропийных сплавов CoCrCuxFeNi2 с высоким содержанием никеля. Известия вузов. Цветная металлургия. 2024;(1):55-69. https://doi.org/10.17073/0021-3438-2024-1-55-69
For citation:
Fedotov A.D., Mukanov S.K., Romanenko B.Yu., Loginov P.A., Bychkova M.Ya., Rupasov S.I. Mechanical and tribological characteristics of nickel-rich CoCrCuxFeNi2 high entropy-alloys. Izvestiya. Non-Ferrous Metallurgy. 2024;(1):55-69. https://doi.org/10.17073/0021-3438-2024-1-55-69