Heterophase synthesis of rare-earth zirconates
https://doi.org/10.17073/0021-3438-2024-1-14-23
Abstract
This study focuses on developing a heterophase process for synthesizing rare-earth zirconates, specifically R2Zr2O7 /R2O3·2ZrO2 (R = La, Sm, Gd, Dy). We investigated the sorption properties of low-hydrated zirconium hydroxide, a precursor for complex-oxide phases, towards rare-earth elements' ions (La, Sm, Gd, Dy). The results indicate that sorption by low-hydrated zirconium hydroxide is a multifaceted process, involving the incorporation of rare-earth cations into the pores of low-hydrated hydroxide and ion exchange. The paper details the synthesis of R2Zr2O7 /R2O3·2ZrO2 (R = La, Sm, Gd, Dy), considering both «light» and «heavy» elements. The process process involves the interaction between Zr(OH)3÷1O0.5÷1.5·(1.6÷2.6)H2O, low-hydrated zirconium hydroxide, and an aqueous solution of rare-earth acetate (С(La3+) = 0.155 mol/l, С(Sm3+) = 0.136 mol/l, С(Gd3+) = 0.141 mol/l, С(Dy3+) = 0.120 mol/l) followed by heat treatment. The resulting phases and their thermolysis products were analyzed using differential thermal analysis and X-ray phase analysis. Single-phase rare-earth zirconates R2Zr2O7 (R = La, Sm, Gd) and the Dy2O3·2ZrO2 solid solution were only obtained at 800 °С. The lattice parameters are calculated for each phase. Lanthanum, samarium, and gadolinium zirconates exibited a cubic pyrochlore structure (Fd3–m), while dysprosium displayed a fluorite structure (Fm3–m). The average particle size of all zirconates was 1.14 ± 0.02 μm.
Keywords
About the Authors
E. E. NikishinaRussian Federation
Elena E. Nikishina – Cand. Sci. (Chem.), Assistant Professor of the Department of Chemistry and Technology of Rare Elements
86 Vernadskiy Prosp., Moscow 119571
N. V. Grechishnikov
Russian Federation
Nikolai V. Grechishnikov – Postgraduate Student of the Department of Chemistry and Technology of Rare Elements
86 Vernadskiy Prosp., Moscow 119571
D. V. Drobot
Russian Federation
Dmitry V. Drobot – Dr. Sci. (Chem.), Professor of the Department of Chemistry and Technology of Rare Elements
86 Vernadskiy Prosp., Moscow 119571
References
1. Jing Zhang, Xingye Guo, Yeon-Gil Jung, Li Li, James Knapp. Lanthanum zirconate based thermal barrier coatings: A review. Surface and Coatings Technology. 2017;323:18—29. https://doi.org/10.1016/j.surfcoat.2016.10.019
2. Debao Liu, Baolu Shi, Liyan Geng, Yiguang Wang, Baosheng Xu, Yanfei Chen. High-entropy rare-earth zirconate ceramics with low thermal conductivity for advanced thermal-barrier coatings. Journal of Advanced Ceramics. 2022;11(6):961—973. https://doi.org/10.1007/s40145-022-0589-z
3. He-juan Song, Li-qun Zhou, Ying Huang, Ling Li, Ting Wang, Lan Yang. Synthesis, characterization and luminescent properties of La2Zr2O7 : Eu3+ nanorods. Chinese Journal of Chemical Physics. 2013;26:83—87. https://doi.org/10.1063/1674-0068/26/01/83-87
4. Zinatloo-Ajabshir S., Salavati-Niasari M., Sobhani A., Zinatloo-Ajabshir Z. Rare earth zirconate nanostructures: Recent development on preparation and photocatalytic applications. Journal of Alloys and Compounds. 2018;767:1164—1185. https://doi.org/10.1016/j.jallcom.2018.07.198
5. Solomon S., George A., Thomas J.K., John A. Preparation, characterization, and ionic transport properties of nanoscale Ln2Zr2O7 (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb) energy materials. Journal of Electronic Materials. 2015;44:28—37. https://doi.org/10.1007/s11664-014-3473-y
6. Koho Yang, Jung-Hsiung Shen, Kai-Yun Yang, I.-Ming Hung, Kuan-Zong Fung, Moo-Chin Wang. Formation of La2Zr2O7 or SrZrO3 on cathode-supported solid oxide fuel cells. Journal of Power Sources. 2006;159:63—67. https://doi.org/10.1016/j.jpowsour.2006.04.049
7. Chunjie Wang, Yue Wang, Xizhi Fan, Wenzhi Huang, Binglin Zou, Xueqiang Cao. Preparation and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic via sol-gel process. Surface and Coatings Technology. 2012;212:88—93. https://doi.org/10.1016/j.surfcoat.2012.09.026
8. Stefanovsky S.V., Yudintsev S.V. Titanates, zirconates, aluminates and ferrites as waste forms for actinide immobilization. Russian Chemical Reviews. 2016;85(9): 962—994. (In Russ). https://doi.org/10.1070/rcr4606
9. Rejith R.S., Thomas J.K., Solomon S. Structural, optical and impedance spectroscopic characterizations of RE2Zr2O7 (RE = La, Y) ceramics. Solid State Ionics. 2018;323:112—122. https://doi.org/10.1016/j.ssi.2018.05.025
10. Rejith R.S., Thomas J.K., Solomon S. Order-disorder transformation and its effect on the properties of (Lanthanide) 2Zr1.5Hf0.5O7 functional nanoceramics. Materials Research Bulletin. 2019;115:1—11. https://doi.org/10.1016/j.materresbull.2019.03.010
11. Fergus J.W. Zirconia and pyrochlore oxides for thermal barrier coatings in gas turbine engines. Metallurgical and Materials Transactions E. 2014;1:118—131. https://doi.org/10.1007/s40553-014-0012-y
12. Sankar J., Kumar S.S. Synthesis of rare earth based pyrochlore structured (A2B2O7) materials for thermal barrier coatings (TBCs) — A review. Current Applied Science and Technology. 2021;21(3):601—617. https://doi.org/10.14456/cast.2021.47
13. Yamamura H., Nishino H., Kakinuma K. Relationship between oxide-ion conductivity and dielectric relaxation in the Ln2Zr2O7 system having pyrochore-type compositions (Ln = Yb, Y, Gd, Eu, Sm, Nd, La). Journal of Physics and Chemistry of Solids. 2008;69:1711—1717. https://doi.org/10.1016/j.jpcs.2007.12.015
14. Fuentes A.F., Montemayor S.M., Maczka M., Lang M., Ewing R.C., Amador U. A critical review of existing criteria for the prediction of pyrochlore formation and stability. Inorganic Chemistry. 2018;57:12093—12105. https://doi.org/10.1021/acs.inorgchem.8b01665
15. Norby T. Fast oxygen ion conductors — from doped to ordered systems. Journal of Materials Chemistry. 2001;11: 11—18. https://doi.org/10.1039/B003463K
16. Rouanet A. Contribution a l’etude des systemes zirconia — oxydes des lanthanides au voisinage de la fusion. Revue Internationale des Hautes Temperatures et des Refractaires. 1971;8(2):161—180.
17. Andrievskaya E.R. Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. Journal of the European Ceramic Society. 2008;28:2363—2388. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
18. Shugurov S.M., Kurapova O.Y., Lopatin S.I., Konakov V.G., Vasil’eva E.A. Thermodynamic properties ofthe La2O3—ZrO2 system by Knudsen effusion mass spectrometry at high temperature. Rapid Communications in Mass Spectrometry. 2017;31(23):2021—2029. https://doi.org/10.1002/rcm.7997
19. Kalinkin A.M., Vinogradov V.Y., Kalinkina E.V. Solid-state synthesis of nanocrystalline gadolinium zirconate using mechanical activation. Inorganic Materials. 2021;57(2):178—185. https://doi.org/10.1134/S0020168521020072
20. Hagiwara T., Nomura K., Kageyama H. Crystal structure analysis of Ln2Zr2O7 (Ln = Eu and La) with a pyrochlore composition by high-temperature powder X-ray diffraction. Journal of the Ceramic Society of Japan. 2017;125:65— 70. https://doi.org/10.2109/jcersj2.16248
21. Duarte W., Meguekam A., Colas M., Vardelle M., Rossignol S. Effects of the counter-cation nature and preparation method on the structure of La2Zr2O7. Journal of Materials Science. 2015;50:463—475. https://doi.org/10.1007/s10853-014-8606-4
22. Simonenko N.P., Sakharov K.A., Simonenko E.P., Sevastyanov V.G., Kuznetsov N.T. Glycol—citrate synthesis of ultrafine lanthanum zirconate. Russian Journal of Inorganic Chemistry. 2015;60(12):1452—1548. https://doi.org/10.1134/S0036023615120232
23. Torres-Rodriguez J., Gutierrez-Cano V., Menelaou M., Kastyl J., Cihlar J., Tkachenko S., Gonzalez J.A., Kalmar J., Fabian I., Lazar I., Celko L., Kaiser J. Rare-earth zirconate Ln2Zr2O7 (Ln: La, Nd, Gd, and Dy) powders, xerogels, and aerogels: Preparation, structure, and properties. Inorganic Chemistry. 2019;58(21):14467—14477. https://doi.org/10.1021/acs.inorgchem.9b01965
24. Popov V.V., Menushenkov A.P., Ivanov A.A., Gaynanov B.R., Yastrebtsev A.A., d’Acapito F., Puri A., Castro G.R., Shchetinin I.V., Zheleznyi M.V., Zubavichus Ya.V., Ponkratov K.V. Comparative analysis of long- and shortrange structures features in titanates Ln2Ti2O7 and zirconates Ln2Zr2O7 (Ln = Gd, Tb, Dy) upon the crystallization process. Journal of Physics and Chemistry of Solids. 2019;130:144—153. https://doi.org/10.1016/j.jpcs.2019.02.019
25. Kong L., Karatchevtseva I., Aughterson R.D., Davis J., Zhang Y., Lumpkin G.R., Triani G. New pathway for the preparation of pyrochlore Nd2Zr2O7 nanoparticles. Ceramics International. 2015;41(6):7618—7625. https://doi.org/10.1016/j.ceramint.2015.02.087
26. Joulia A., Vardelle M., Rossignol S. Synthesis and thermal stability of Re2Zr2O7 (Re = La, Gd) and La2(Zr1-xCex)2O7-δ compounds under reducing and oxidant atmospheres for thermal barrier coatings. Journal of the European Ceramic Society. 2013;33(13-14):2633—2644. https://doi.org/10.1016/j.jeurceramsoc.2013.03.030
27. Nikishina E.E., Lebedeva E.N., Drobot D.V. Individual and bimetallic low-hydrated zirconium and hafnium hydroxides: Synthesis and properties. Russian Journal of Inorganic Chemistry. 2015;60(8):921—929. https://doi.org/10.1134/S0036023615080148
28. Nikishina E.E., Lebedeva E.N., Prokudina N.A., Drobot D.V. Physicochemical properties of low-hydrated zirconium and hafnium hydroxides and their thermolysis products. Inorganic Materials. 2015;51(12):1190—1198. https://doi.org/10.1134/S0020168515110072
29. David F., Vokhminz V., Ionova G. Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. Journal of Molecular Liquids. 2001;90:45—62. https://doi.org/10.1016/S0167-7322(01)00106-4
30. Rudolph W.W., Irmer G. On the hydration of the rare earth ions in aqueous solution. Journal of Solution Chemistry. 2020;49:316—331. https://doi.org/10.1007/s10953-020-00960-w
Review
For citations:
Nikishina E.E., Grechishnikov N.V., Drobot D.V. Heterophase synthesis of rare-earth zirconates. Izvestiya. Non-Ferrous Metallurgy. 2024;(1):14-23. https://doi.org/10.17073/0021-3438-2024-1-14-23