Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Purification of process solutions from mercury by sorption

https://doi.org/10.17073/0021-3438-2024-1-5-13

Abstract

At JSC «Uralelectromed», selenium-containing raw materials and industrial products are processed, resulting in solutions containing a mixture of mercury with concentrations as follows (g/dm3): 157–210 Se; 0.004–0.02 Hg; 0.15–0.20 Te; 2–3 As; 0.15–0.20 Sb; and 45–50 S. To produce branded selenium, the mercury concentration in the solution must be kept below 0.001 g/dm3. Various methods, such ashydrometallurgical and electrochemical processes, are known for mercury purification from solutions. JSC «Uralelectromed» has selected sorption technology for mercury removal using the weak-base macroporous anionite Lewatit MP-68 (Germany), which allows for control over the degree of solution purification. In pursuit of import substitution for the Western European sorbent Lewatit MP-68, we investigated several pre-selected industrial sorbents for extracting mercury anionic complexes produced in Russia (AM-2B, AN-31, AV 17-8, VP-3Ap), China (Seplite MA 940 and LSC 710), and India (Tulsion CH-95 and CH-97). Initially, in static mode, we determined the distribution coefficient (Cd), the degree of element extraction (ε), the static exchange capacity of the resins (SEC, g/dm3), and the mercury/selenium separation coefficient (DHg/Se) which led to the selection of the best samples: AV 17-8, Seplite MA 940, AM-2B, and CH-97, with SEC values of 0.95–0.97 g/dm3 (SEC = 0.98 g/dm3 of resin Lewatit MP-68). Subsequently, in dynamic mode, we ranked the ionites by decreasing dynamic exchange capacity (DEC / TDEC): AV 17-8 ≥ Lewatit MP-68 > AM-2B > Seplite MA 940 > Tulsion CH-97. Resins AV 17-8, Seplite MA 940, and AM-2B demonstrated similar dynamic sorption characteristics; under comparable conditions, mercury breakthrough occurred after processing at least 950 specific volumes of the initial solution. In contrast, with Lewatit MP-68 ionite, mercury breakthrough occurred after no more than 750 specific volumes, indicating the need to increase the number of sorption steps in the solution purification cascade. Considering the totality of ion-exchange properties, for further industrial testing, it is recommended to use the domestically produced resin AV 17-8 instead of the foreign sorbent Lewatit MP-68 in the sorption purification process of selenic acid to remove mercury, thereby ensuring the production of branded selenium.

About the Authors

Ya. D. Zelyakh
JSC «Uralelectromed»
Russian Federation

Yakov D. Zelyakh – Head of the Precious Metals Laboratory of the Research Center

Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091



K. L. Timofeev
JSC «Uralelectromed»; UMMC Technical University
Russian Federation

Konstantin L. Timofeev – Dr. Sci. (Eng.), Head of the Department; Associate Professor of the Department of metallurgy

Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091;

3 Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091



R. S. Voinkov
JSC «Uralelectromed»; UMMC Technical University
Russian Federation

Roman S. Voinkov – Cand. (Sci.) Eng., Head of the Research Center

Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091;

3 Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091

 



G. I. Maltsev
JSC «Uralelectromed»
Russian Federation

Gennady I. Maltsev – Dr. Sci. (Eng.), Senior Researcher, Chief Specialist of the Research Center

Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091



V. A. Shunin
JSC «Uralelectromed»
Russian Federation

Vladimir A. Shunin – Chief Specialist of the Engineering and Production Department

Uspenskiy Prosp., Verkhnyaya Pyshma, Sverdlovsk region 624091



References

1. Лебедь А.Б., Набойченко С.С., Шунин В.А. Производство селена и теллура на ОАО «Уралэлектро-медь». Екатеринбург: УрФУ, 2015. 112 с.

2. Yang S., Li Z., Yan K., Zhang X., Xu Z., Liu W., Liu Z., Liu H. Removing and recycling mercury from scrubbingsolution produced in wet nonferrous metal smelting flue gas purification process. Journal of Environmental Sciences. 2021;(103):59—68. https://doi.org/10.1016/j.jes.2020.10.013

3. Fabre E., Rocha A., Cardoso S.P., Brandão P., Vale C. Lopes C.B., Pereira E., Silva C.M. Purification of mercury-contaminated water using new AM-11 and AM-14 microporous silicates. Separation and Purification Technology. 2020;(239):116438. https://doi.org/10.1016/j.seppur.2019.116438

4. Ponomarev A.V., Bludenko A.V., Makarov I.E., Pikaev A.K., Kim D.K., Kim Y., Han B. Combined electronbeam and adsorption purification of water from mercury and chromium using materials of vegetable origin as sorbents. Radiation Physics and Chemistry. 1997;49(4):473—476. http://dx.doi.org/10.1016/S0969-806X(96)00148-X

5. Zhang B., Petcher S., Gao H., Yan P., Cai D., Fleming G., Parker D.J., Chong S.Y., Hasell T. Magnetic sulfur-doped carbons for mercury adsorption. Journal of Colloid and Interface Science. 2021;(603):728—737. https://doi.org/10.1016/j.jcis.2021.06.129

6. Pang X., Liu W., Xu H., Hong Q., Cui P., Huang W., Qu Z., Yan N. Selective uptake of gaseous sulfur trioxide and mercury in ZnO—CuS composite at elevated temperatures from SO2-rich flue gas. Chemical Engineering Journal. 2022;(427):132035. https://doi.org/10.1016/j.cej.2021.132035

7. Xin F., Xiao R., Zhao Y., Zhang J. Surface sulfidation modification of magnetospheres from fly ash for elemental mercury removal from coal combustion flue gas. Chemical Engineering Journal. 2022;(436):135212. http://dx.doi.org/10.1016/j.cej.2022.135212

8. Teng H., Altaf A.R. Elemental mercury (Hg 0 ) emission, hazards, and control: A brief review. Journal of Hazardous Materials Advances. 2022;(5):100049. https://doi.org/10.1016/j.hazadv.2022.100049

9. Ji Z., Huang B., Gan M., Fan X., Wang Y., Chen X., Sun Z., Huang X., Zhang D., Fan Y. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: A review. Process Safety and Environmental Protection. 2021;(150):578—593. https://doi.org/10.1016/j.psep.2021.04.017

10. Jia T., Luo F., Wu J., Chu F., Xiao Y., Liu Q., Pan W., Li F. Nanosized Zn—In spinel-type sulfides loaded on facet-oriented CeO 2 nanorods heterostructures as Z-scheme photocatalysts for efficient elemental mercury removal. Science of the Total Environment. 2022;(813):151865. https://doi.org/10.1016/j.scitotenv.2021.151865

11. Meng F., Umair M.M., Iqbal K., Jin X., Zhang S., Tang B. Rapid fabrication of noniridescent structural color coatings with high color visibility, good structural stability, and self-healing properties. ACS Applied Materials Interfaces. 2019;11(13):13022—13028. https://doi.org/10.1021/acsami.9b01522

12. Anacleto A.L., Carvalho J.R. Mercury cementation from chloride solutions using iron, zinc and aluminium. Minerals Engineering. 1996;9(4):385—397. https://doi.org/10.1016/0892-6875(96)00025-8

13. Гладышев В.П., Левицкая С.А., Филиппова Л.М. Аналитическая химия ртути. М.: Наука, 1974. 231 с.

14. Shen F., He S., Li J., Liu C., Xiang K., Liu H. Formation of sulfur oxide groups by SO 2 and their roles in mercury adsorption on carbon-based materials. Journal of Environmental Sciences. 2022;(119):44—49. https://doi.org/10.1016/j.jes.2021.11.011

15. Wadi V.S., Mittal H., Fosso-Kankeu E., Jena K.K., Alhassan S.M. Mercury removal by porous sulfur copolymers: Adsorption isotherm and kinetics studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;(606):125333. http://dx.doi.org/10.1016/j.colsurfa.2020.125333

16. Lennie A.R., Charnock J.M., Pattrick R.A.D. Structure of mercury (II)—sulfur complexes by EXAFS spectroscopic measurements. Chemical Geology. 2003;199(3-4):199—207. https://doi:10.1016/S0009-2541(03)00118-9

17. Bell A.M.T., Charnock J.M., Helz G.R., Lennie A.R., Livens F.R., Mosselmas J.F.W., Pattrick R.A.D., Vaughan D.J. Evidence for dissolved polymeric mercury(II)-sulfur complexes. Chemical Geology. 2007; 243(1-2):122—127. https://doi.org/10.1016/J.CHEMGEO.2007.05.013

18. Al-Jibori S.A., Al-Doori L.A., Al-Janabi A.S.M., Alheety M.A., Wagner C., Karadag A. Mercury (II) mixed ligand complexes of phosphines or amines with 2-cyanoamino thiophenolate ligands formed via monodeprotonation and carbon—sulfur bond cleavage of 2-aminoben-zothiazole. X-ray crystal structures of [Hg(SC 6H4 NCN) (PPh 3)]2 and [Hg(SC 6H4 NCN)(Ph 2 PCH 2 PPh 2)]2 . Polyhedron. 2021;(206):115349. http://dx.doi.org/10.1016/j.poly.2021.115349

19. Шунин В.А., Соколова И.С., Лебедь А.Б. Сорбционная очистка продуктивных селеновых растворов от примесей тяжелых металлов. В сб.: Новые технологии обогащения и комплексной переработки труднообогатимого природного и техногенного минерального сырья (Плаксинские чтения 2011): Тезисы докладов международного совещания (Верхняя Пышма, 19—24 сент. 2011 г.). Екатеринбург: Форт Диалог-Исеть, 2011. С. 428—429.

20. Habashi F. Metallurgical plants: How mercury pollution is abated. Environmental Science and Technology. 1978; 23(13):1372—1376. https://doi.org/10.1021/ES60148A011

21. Hylander I.D., Herbert R.B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores. Environmental Science and Technology. 2008;42(16):5971—5977. https://doi.org/10.1021/es800495g

22. Yu M-H., Yang H-H., Gu Y-C., Wang B-H., Liu F-C., Lin I.J.B., Lee G-H. Formation of anionic NHC complexes through the reaction of benzimidazoles with mercury chloride. Subsequent protonation and transmetallation reactions. Journal of Organometallic Chemistry. 2019;(887):12—17. https://doi.org/10.1016/J.JORGANCHEM.2019.02.015

23. Tugashov K.I., Gribanyov D.A., Dolgushin F.M., Smol′yakov A.F., Peregudov A.S., Klemenkova Z.S., Matvienko O.V., Tikhonova I.A., Shur V.B. Coordination chemistry of anticrowns. Isolation of the chloride complex of the four-mercury anticrown {[(o,o′-C 6 F 4 C 6 F 4 Hg) 4 ]Cl}− from the reaction of o,o′-dilithiooctaf luorobiphenyl with HgCl 2 and its transformations to the free anticrown and the complexes with o-xylene, acetonitrile, and acetone. Organometallics. 2017;36(13): 2437—2445. https://doi.org/10.1021/ACS.ORGANOMET.7B00315

24. Al-Amri A-H.D., Fettouhi M., Wazeer M.I.M., Isab A.A. Synthesis, X-ray structure and 199 Hg, 77 Se CP MAS NMR studies on the first tris(imidazolidine-2-selone) mercury complex: {chloro-tris[N-methyl-2(3H)-imidazolidine-2-selone]mercury(II)}chloride. Inorganic Chemistry Communications. 2005;8(12):1109—1112. https://doi.org/10.1016/J.INOCHE.2005.09.010

25. Hadjikakou S.K., Kubicki M. Synthesis, characterisation and study of mercury (II) chloride complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [(benzothiazole-2-thionato)(benzothia-zole-2-thione)(bis-triphenylphosphine) chloro mercury (II)] and [(μ 2-dichloro){(bis-pyrimidine-2-thionato) mercury (II)}{(bis-triphenylphosphine) mercury (II)}] at 100 K. Polyhedron. 2000;19(20-21):2231—2236. https://doi.org/10.1016/S0277-5387(00)00533-7

26. Pazderski L., Szlyk E., Wojtczak A., Kozerski L., Sitkowski J., Kamieński B. The crystal and molecular structures of catena[bis(μ 2-chloro)-(μ 2-pyridazine-N,N′)] cadmium (II) and catena[bis(μ 2-chloro)-(μ 2 -pyridazine-N,N′)]mercury (II) and the solid-phase 13 C, 15 N NMR studies of Zn(II), Cd(II), Hg(II) chloride complexes with pyridazine. Journal of Molecular Structure. 2004;697(1-3): 143—149. https://doi.org/10.1016/j.molstruc.2004.03.048

27. Korolev A.A., Shunin V.A., Timofeev K.L., Maltsev G.I., Voinkov R.S. Sorption purification of selenic acid solutions from mercury. Chemistry for Sustainable Development. 2022;(4):372—382. (In Russ.). http://doi.org/10.15372/CSD2022393


Review

For citations:


Zelyakh Ya.D., Timofeev K.L., Voinkov R.S., Maltsev G.I., Shunin V.A. Purification of process solutions from mercury by sorption. Izvestiya. Non-Ferrous Metallurgy. 2024;(1):5-13. https://doi.org/10.17073/0021-3438-2024-1-5-13

Views: 453


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)