Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Restoration of continuous casting machine mold copper plates made of Cr–Zr bronze using multi-pass friction stir lap welding

https://doi.org/10.17073/0021-3438-2023-6-66-83

Abstract

An innovative technology has been developed and implemented for the restoration and manufacturing of new mold copper plates for continuous casting machines (CCMs) using wear-resistant composite coatings. These copper plates significantly surpass the service life of imported copper plates featuring galvanic coatings, sometimes by up to 20 times. However, the pressing challenge of restoring the copper plates of molds once they have reached the minimum permissible thickness remains unresolved. This study aimed to explore the feasibility of restoring a plate composed of precipitation-hardening Cr–Zr bronze with the same material by employing friction stir lap welding (FSLW). The objectives were to examine the structure, quality, and hardness of the welded joint, alongside investigating the impact of heat treatment (quenching and aging). By utilizing multi-pass FSLW method with a rotating tool crafted from a heat-resistant alloy and overlapping (partially overlapping) successive passes, a welded joint with a thickness of ~5 mm was achieved, devoid of critical continuity flaws (cracks or voids). Within the bronze layer restored through FSW, a softening effect ranging from 85–105 HV1 was observed compared to the initial hardness of the bronze in its hardened and aged state while in service (116–126 HV1). This is attributed to recrystallization and overaging, specifically the coarsening of chromium particles within the Cr–Zr bronze due to the heating of the weld nugget (stir zone) to 600–700 °C. The observed softening effect during FSW can be effectively rectified through heat treatment involving dissolution of the hardening phases followed by aging, resulting in a hardness increase to approximately 120–150 HV1. The process of restoring copper plates to their original thickness via the progressive and environmentally friendly FSW method, followed be the subsequent application of wear-resistant composite coatings, presents the opportunity for an almost infinite operational cycle of molds. This advancement could potentially eradicate the necessity for Russia to rely on importing such molds copper plates.

About the Authors

A. V. Makarov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Alexey V. Makarov – Dr. Sci. (Eng.), Corresponding Member of RAS, Head of Materials Science Department, Head of Mechanical Properties Laboratory,

18, S. Kovalevskaya Str., Yekaterinburg, 620108.



N. V. Lezhnin
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Nikita V. Lezhnin – Cand. Sci. (Eng.), Senior Research Scientist of Mechanical Properties Laboratory,

18, S. Kovalevskaya Str., Yekaterinburg, 620108.



A. B. Kotelnikov
R&D Enterprise “Mashprom”
Russian Federation

Alexander B. Kotelnikov – General Director,

5, Krasnoznamennaya Str., Yekaterinburg, 620143.



A. A. Vopneruk
R&D Enterprise “Mashprom”
Russian Federation

Alexander A. Vopneruk – Cand. Sci. (Eng.), Project Manager,

5, Krasnoznamennaya Str., Yekaterinburg, 620143.



Yu. S. Korobov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences; Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Yuri S. Korobov – Dr. Sci. (Eng), Chief Research Scientist, Head of Laboratory of Laser and Plasma Processing; Professor of the Department of Welding Production Technology,

18, S. Kovalevskaya Str., Yekaterinburg, 620108;

19, Mira Str., Yekaterinburg 620002.



A. I. Valiullin
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Andrey I. Valiullin – Cand. Sci. (Eng.), Research Scientist of Mechanical Properties Laboratory,

18, S. Kovalevskaya Str., Yekaterinburg, 620108.



E. G. Volkova
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Russian Federation

Elena G. Volkova – Cand. Sci. (Phys.-Math.), Senior Research Scientist of Mechanical Properties Laboratory,

18, S. Kovalevskaya Str., Yekaterinburg, 620108.



References

1. Kotelnikov A.V., Vopneruk A.A., Makarov A.V., Korobov Yu.S., Kirichkov A.A., Dagman A.I., Shefrin I.N. New materials and technologies for significantly increase the wear resistance of the working surface of metallurgical equipment. Tyazheloe mashinostroenie. 2018;(9):14—20. (In Russ.).

2. Vdovin K.N., Pozin A.E. Cavitation wear of coated copper walls of molds. Stal’. 2018;(9):14—20. (In Russ.).

3. Kushnarev A.V., Kirichkov A.A., Vopneruk A.A., Kotelnikov A.V., Korobov Yu.S., Makarov A.V., Filatov S.V., Shefrin I.N. Physico-mechanical characteristics of thermal sprayed coatings on the walls of the mold of continuous casting machines. Svarka i diagnostika. 2017;(5):50—53. (In Russ.).

4. Korobov Yu.S., Kotelnikov A.B., Kushnarev A.V., Kirichkov A.A., Filippov M.A., Vopneruk A.A. Analysis of the features of the formation of thermal sprayed coatings on the wall slab crystallizer. Chernye metally. 2017;(1): 41—45. (In Russ.).

5. Makarov A.V., Soboleva N.N., Malygina I.Yu. Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings. Journal of Friction and Wear. 2017;38(4): 272—278.

6. Макаров А.В., Соболева Н.Н., Малыгина И.Ю., Осинцева А.Л. Способ получения теплостойкого покрытия: Патент 2492980 (РФ). 2013.

7. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment. Metal Science and Heat Treatment. 2015;57(3-4):161—168.

8. Makarov A.V., Soboleva N.N., Malygina I.Yu., Kharanzhevskiy E.V. Improving the properties of a rapidly crystallized NiCrBSi laser clad coating with hightemperature processing. Journal of Crystal Growth. 2019;525;125200. https://doi.org/10.1016/j.jcrysgro.2019.125200

9. Soboleva N.N., Makarov A.V. Effect of conditions of hightemperature treatment on the structure and tribological properties of nickel-based laser-clad coating. Russian Journal of Non-Ferrous Metals. 2021;62(6): 682—691. https://link.springer.com/article/10.3103/S1067821221060183

10. Гуревич С.М. Справочник по сварке цветных металлов. Киев: Наукова думка, 1981. 608 р. (In Russ.).

11. Kazakov N.F. Diffusion Bonding of Materials. Oxford, New York: Pergamon Press, 1985. 304 p.

12. Lysak V., Kuzmin S. Lower boundary in metal explosive welding. Evolution of ideas. Journal of Materials Processing Technology. 2012;212(1):150—156. https://doi.org/10.1016/j.jmatprotec.2011.08.017

13. Nazarov A.A., Murzinova M.A., Mukhametgalina A.A., Shayakhmetova E.R. Bulk ultrasonic treatment of crystalline materials. Metals. 2023;13(2):344. https://doi.org/10.3390/met13020344

14. Sun F., Liu P., Chen X., Zhou H., Guan P., Zhu B., Mechanical properties of high-strength Cu—Cr—Zr alloy fabricated by selective laser melting. Materials. 2020;13;5028. https://doi.org/10.3390/ma13215028

15. Tang X., Chen X., Sun F., Liu P., Zhou H., Fu S. The current state of CuCrZr and CuCrNb alloys manufactured by additive manufacturing: A review. Materials & Design. 2022;224;111419. https://doi.org/10.1016/j.matdes.2022.111419

16. Клименко Ю.В. Способ сварки металлов трением: Патент 195846 (СССР). 1967.

17. Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Templesmith P., Dawes C.J. Optimization of welding parameters for friction stir lap welding of AA6061-T6 alloy: Patent PCT/GB92/02203 (International).1991.

18. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Materials Science and Engineering: R. 2005;50(1-2): 1—78. https://doi.org/10.1016/j.mser.2005.07.001

19. Mishra R.S., Mahoney M.W. Friction stir welding and processing. ASM International. 2007;1:1—5. https://doi.org/10.1361/fswp2007p001

20. Heidarzadeh A., Mironov S., Kaibyshev R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science. 2021;(117):100752. https://doi.org/10.1016/j.pmatsci.2020.100752

21. Lee W.B., Jung S.B. The joint properties of copper by friction stir welding. Materials Letters. 2004;58(6): 1041—1046. https://doi.org/10.1016/j.matlet.2003.08.014

22. Sun Y.F., Fujii H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Materials Science and Engineering: A. 2010;527(26):6879—6886. https://doi.org/10.1016/j.msea.2010.07.030

23. Surekha K., Els-Botes A. Development of high strength, high conductivity copper by friction stir processing. Materials & Design. 2011;32(2)911—916. https://doi.org/10.1016/j.matdes.2010.08.028

24. Palko W.A., Fielder R.S., Young P.F. Investigation of the use of friction stir processing to repair and locally enhance the properties of large NiAl bronze propellers. Materials Science Forum. 2003;426-432:2909—2914. https://doi.org/10.4028/www.scientific.net/MSF.426-432.2909

25. Oh-Ishi K., Zhilyaev A.P., McNelley T.R. A microtexture investigation of recrystallization during friction stir processing of as-cast NiAl bronze. Metallurgical and Materials Transactions A. 2006;37(7):2239—2251. https://doi.org/10.1007/BF02586143

26. Barlas Z., Uzun H. Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets. Journal of Achievements in Materials and Manufacturing Engineering. 2008;30(2):182—186.

27. Heidarzadeh A. Saeid T., Klemm V., Chabok A., Pei Y. Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys. Materials & Design. 2019;162:185—197. https://doi.org/10.1016/j.matdes.2018.11.050

28. Galvão I., Loureiro A., Rodrigues D. M. Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 2016;21(7):523—546. https://doi.org/10.1080/13621718.2015.1118813

29. Zoeram A.S., Anijdan S.H.M., Jafarian H.R., Bhattacharjee T. Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior. Materials Science and Engineering: A. 2017;687:288—297. https://doi.org/10.1016/j.msea.2017.01.071

30. Narasimharaju S., Sankunny S. Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/Pure copper. Engineering Solid Mechanics. 2019;7(3):217—228. https://doi.org/10.5267/j.esm.2019.5.002

31. Avettand-Fènoël M.N., Nagaoka T., Marinova M., Taillard R. Upon the effect of Zn during friction stir welding of aluminum-copper and aluminum-brass systems. Journal of Manufacturing Processes. 2020;58: 259—278. https://doi.org/10.1016/j.jmapro.2020.08.006

32. Ni D.R., Xiao B.L., Ma Z.Y., Qiao Y.X., Zheng Y.G. Corrosion properties of friction—stir processed cast NiAl bronze. Corrosion Science. 2010;52(5):1610—1617. https://doi.org/10.1016/j.corsci.2010.02.026

33. Li Y., Lian Y., Sun Y. Cavitation erosion behavior of friction stir processed nickel aluminum bronze. Journal of Alloys and Compounds. 2019;795:233—240. https://doi.org/10.1016/j.jallcom.2019.04.302

34. Lv Y., Nie B., Wang L., Cui H., Li L., Wang R., Lyu F. Optimal microstructures on fatigue properties of friction stir processed NiAl bronze alloy and its resistant fatigue crack growth mechanism. Materials Science and Engineering: A. 2020;771:138577. https://doi.org/10.1016/j.msea.2019.138577

35. He D.Q., Lai R.L., Xu Sh.H., Yang K.Y., Ye Sh.Y., Wang J., Zhu J.M., Suet B. Microstructure and mechanical properties of Cu—Cr—Zr alloy by friction stir welding. Advanced Materials Research. 2012;602-604:608—611. https://doi.org/10.4028/www.scientific.net/AMR.602-604.608

36. Wang Y.D., Zhu S.Z., Xie G.M., Wu L.H., Xue P., Ni D.R., Xiao B.L., Ma Z.Y. Realising equal-strength welding with good conductivity in Cu—Cr—Zr alloy via friction stir welding. Science and Technology of Welding and Joining. 2021;26(6):448—454. https://doi.org/10.1080/13621718.2021.1935151

37. Nikityuk Yu.N., Grigorenko G.M., Zelenin V.I., Zelenin E.V., Poleshchuk M.A. Technology for the restoration of slab molds of continuous casters using friction stir surfacing. Sovremennaya elektrometallurgiya. 2013;(3): 51—55. (In Russ.).

38. Grigorenko G.M., Adeeva L.I., Tunik A.Yu., Poleshchuk M.A., Zelenin V.I., Zelenin E.V. Refurbishment of slab copper crystallizers of continuous casting machines. Structure and properties of metal in the joint zone. Sovremennaya elektrometallurgiya. 2015;(1):44—49.

39. Lezhnin N.V., Makarov A.V., Volkova E.G., Valiullin A.I., Kotelnikov A.B., Vopneruk A.A. Realizing ultrafine grain structure of Cu—Cr—Zr alloy via friction stir welding/processing. Letters on Materials. 2022;12(4):428—432. https://doi.org/10.22226/2410-3535-2022-4-428-432

40. Lai R., Li X., He D., Lin J., Li J., Lei Q. Microstructures evolution and localized properties variation of a thick friction stir welded CuCrZr alloy plate. Journal of Nuclear Materials. 2018;510;70—79. https://doi.org/10.1016/j.jnucmat.2018.07.055

41. Осинцев О.Е., Федоров В.Н. Медь и медные сплавы. Отечественные и зарубежные марки: Справочник. 2-е изд., перераб. и доп. М.: Инновационное машиностроение, 2016. 360 с.

42. Morozova A., Mishnev R., Belyakov A., Kaibyshev R. Microstructure and properties of fine grained Cu—Cr—Zr alloys after termo-mechanical treatments. Reviews on Advanced Materials Science. 2018;54;56—92. https://doi.org/10.1515/rams-2018-0020

43. Khomskaya I.V., Zel’dovich V.I., Frolova N.Y., Abdullina D.N., Kheifets A.E. Investigation of Cu5Zr particles precipitation in Cu—Zr and Cu—Cr—Zr alloys subjected to quenching and high strain rate deformation. Letters on Materials. 2019;9(4):400—404. https://doi.org/10.22226/2410-3535-2019-4-400-404

44. Edwards D.J., Singh B.N., Tähtinen S. Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy. Journal of Nuclear Materials. 2007;367-370:904—909. https://doi.org/10.1016/j.jnucmat.2007.03.064

45. Park J.-Y., Lee J.-S., Choi B.-K., Hong B.G., Jeong Y.H. Effect of cooling rate on mechanical properties of aged ITER-grade CuCrZr. Fusion Engineering and Design. 2008;83:1503—1507. https://doi.org/10.1016/j.fusengdes.2008.07.006

46. Zel’dovich V.I., Khomskaya I.V., Frolova N.Yu., Kheifets A.E., Shorokhov E.V., Nasonov P.A. Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging. Physics of Metals and Metallography. 2013;114(5):411—418. https://doi.org/10.1134/S0031918X13050141


Review

For citations:


Makarov A.V., Lezhnin N.V., Kotelnikov A.B., Vopneruk A.A., Korobov Yu.S., Valiullin A.I., Volkova E.G. Restoration of continuous casting machine mold copper plates made of Cr–Zr bronze using multi-pass friction stir lap welding. Izvestiya. Non-Ferrous Metallurgy. 2023;(6):66-83. https://doi.org/10.17073/0021-3438-2023-6-66-83

Views: 491


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)