Restoration of continuous casting machine mold copper plates made of Cr–Zr bronze using multi-pass friction stir lap welding
https://doi.org/10.17073/0021-3438-2023-6-66-83
Abstract
An innovative technology has been developed and implemented for the restoration and manufacturing of new mold copper plates for continuous casting machines (CCMs) using wear-resistant composite coatings. These copper plates significantly surpass the service life of imported copper plates featuring galvanic coatings, sometimes by up to 20 times. However, the pressing challenge of restoring the copper plates of molds once they have reached the minimum permissible thickness remains unresolved. This study aimed to explore the feasibility of restoring a plate composed of precipitation-hardening Cr–Zr bronze with the same material by employing friction stir lap welding (FSLW). The objectives were to examine the structure, quality, and hardness of the welded joint, alongside investigating the impact of heat treatment (quenching and aging). By utilizing multi-pass FSLW method with a rotating tool crafted from a heat-resistant alloy and overlapping (partially overlapping) successive passes, a welded joint with a thickness of ~5 mm was achieved, devoid of critical continuity flaws (cracks or voids). Within the bronze layer restored through FSW, a softening effect ranging from 85–105 HV1 was observed compared to the initial hardness of the bronze in its hardened and aged state while in service (116–126 HV1). This is attributed to recrystallization and overaging, specifically the coarsening of chromium particles within the Cr–Zr bronze due to the heating of the weld nugget (stir zone) to 600–700 °C. The observed softening effect during FSW can be effectively rectified through heat treatment involving dissolution of the hardening phases followed by aging, resulting in a hardness increase to approximately 120–150 HV1. The process of restoring copper plates to their original thickness via the progressive and environmentally friendly FSW method, followed be the subsequent application of wear-resistant composite coatings, presents the opportunity for an almost infinite operational cycle of molds. This advancement could potentially eradicate the necessity for Russia to rely on importing such molds copper plates.
Keywords
About the Authors
A. V. MakarovRussian Federation
Alexey V. Makarov – Dr. Sci. (Eng.), Corresponding Member of RAS, Head of Materials Science Department, Head of Mechanical Properties Laboratory,
18, S. Kovalevskaya Str., Yekaterinburg, 620108.
N. V. Lezhnin
Russian Federation
Nikita V. Lezhnin – Cand. Sci. (Eng.), Senior Research Scientist of Mechanical Properties Laboratory,
18, S. Kovalevskaya Str., Yekaterinburg, 620108.
A. B. Kotelnikov
Russian Federation
Alexander B. Kotelnikov – General Director,
5, Krasnoznamennaya Str., Yekaterinburg, 620143.
A. A. Vopneruk
Russian Federation
Alexander A. Vopneruk – Cand. Sci. (Eng.), Project Manager,
5, Krasnoznamennaya Str., Yekaterinburg, 620143.
Yu. S. Korobov
Russian Federation
Yuri S. Korobov – Dr. Sci. (Eng), Chief Research Scientist, Head of Laboratory of Laser and Plasma Processing; Professor of the Department of Welding Production Technology,
18, S. Kovalevskaya Str., Yekaterinburg, 620108;
19, Mira Str., Yekaterinburg 620002.
A. I. Valiullin
Russian Federation
Andrey I. Valiullin – Cand. Sci. (Eng.), Research Scientist of Mechanical Properties Laboratory,
18, S. Kovalevskaya Str., Yekaterinburg, 620108.
E. G. Volkova
Russian Federation
Elena G. Volkova – Cand. Sci. (Phys.-Math.), Senior Research Scientist of Mechanical Properties Laboratory,
18, S. Kovalevskaya Str., Yekaterinburg, 620108.
References
1. Kotelnikov A.V., Vopneruk A.A., Makarov A.V., Korobov Yu.S., Kirichkov A.A., Dagman A.I., Shefrin I.N. New materials and technologies for significantly increase the wear resistance of the working surface of metallurgical equipment. Tyazheloe mashinostroenie. 2018;(9):14—20. (In Russ.).
2. Vdovin K.N., Pozin A.E. Cavitation wear of coated copper walls of molds. Stal’. 2018;(9):14—20. (In Russ.).
3. Kushnarev A.V., Kirichkov A.A., Vopneruk A.A., Kotelnikov A.V., Korobov Yu.S., Makarov A.V., Filatov S.V., Shefrin I.N. Physico-mechanical characteristics of thermal sprayed coatings on the walls of the mold of continuous casting machines. Svarka i diagnostika. 2017;(5):50—53. (In Russ.).
4. Korobov Yu.S., Kotelnikov A.B., Kushnarev A.V., Kirichkov A.A., Filippov M.A., Vopneruk A.A. Analysis of the features of the formation of thermal sprayed coatings on the wall slab crystallizer. Chernye metally. 2017;(1): 41—45. (In Russ.).
5. Makarov A.V., Soboleva N.N., Malygina I.Yu. Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings. Journal of Friction and Wear. 2017;38(4): 272—278.
6. Макаров А.В., Соболева Н.Н., Малыгина И.Ю., Осинцева А.Л. Способ получения теплостойкого покрытия: Патент 2492980 (РФ). 2013.
7. Makarov A.V., Soboleva N.N., Malygina I.Yu., Osintseva A.L. Formation of wear-resistant chromium-nickel coating with extra high thermal stability by combined laser-and-heat treatment. Metal Science and Heat Treatment. 2015;57(3-4):161—168.
8. Makarov A.V., Soboleva N.N., Malygina I.Yu., Kharanzhevskiy E.V. Improving the properties of a rapidly crystallized NiCrBSi laser clad coating with hightemperature processing. Journal of Crystal Growth. 2019;525;125200. https://doi.org/10.1016/j.jcrysgro.2019.125200
9. Soboleva N.N., Makarov A.V. Effect of conditions of hightemperature treatment on the structure and tribological properties of nickel-based laser-clad coating. Russian Journal of Non-Ferrous Metals. 2021;62(6): 682—691. https://link.springer.com/article/10.3103/S1067821221060183
10. Гуревич С.М. Справочник по сварке цветных металлов. Киев: Наукова думка, 1981. 608 р. (In Russ.).
11. Kazakov N.F. Diffusion Bonding of Materials. Oxford, New York: Pergamon Press, 1985. 304 p.
12. Lysak V., Kuzmin S. Lower boundary in metal explosive welding. Evolution of ideas. Journal of Materials Processing Technology. 2012;212(1):150—156. https://doi.org/10.1016/j.jmatprotec.2011.08.017
13. Nazarov A.A., Murzinova M.A., Mukhametgalina A.A., Shayakhmetova E.R. Bulk ultrasonic treatment of crystalline materials. Metals. 2023;13(2):344. https://doi.org/10.3390/met13020344
14. Sun F., Liu P., Chen X., Zhou H., Guan P., Zhu B., Mechanical properties of high-strength Cu—Cr—Zr alloy fabricated by selective laser melting. Materials. 2020;13;5028. https://doi.org/10.3390/ma13215028
15. Tang X., Chen X., Sun F., Liu P., Zhou H., Fu S. The current state of CuCrZr and CuCrNb alloys manufactured by additive manufacturing: A review. Materials & Design. 2022;224;111419. https://doi.org/10.1016/j.matdes.2022.111419
16. Клименко Ю.В. Способ сварки металлов трением: Патент 195846 (СССР). 1967.
17. Thomas W.M., Nicholas E.D., Needham J.C., Murch M.G., Templesmith P., Dawes C.J. Optimization of welding parameters for friction stir lap welding of AA6061-T6 alloy: Patent PCT/GB92/02203 (International).1991.
18. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Materials Science and Engineering: R. 2005;50(1-2): 1—78. https://doi.org/10.1016/j.mser.2005.07.001
19. Mishra R.S., Mahoney M.W. Friction stir welding and processing. ASM International. 2007;1:1—5. https://doi.org/10.1361/fswp2007p001
20. Heidarzadeh A., Mironov S., Kaibyshev R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Progress in Materials Science. 2021;(117):100752. https://doi.org/10.1016/j.pmatsci.2020.100752
21. Lee W.B., Jung S.B. The joint properties of copper by friction stir welding. Materials Letters. 2004;58(6): 1041—1046. https://doi.org/10.1016/j.matlet.2003.08.014
22. Sun Y.F., Fujii H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Materials Science and Engineering: A. 2010;527(26):6879—6886. https://doi.org/10.1016/j.msea.2010.07.030
23. Surekha K., Els-Botes A. Development of high strength, high conductivity copper by friction stir processing. Materials & Design. 2011;32(2)911—916. https://doi.org/10.1016/j.matdes.2010.08.028
24. Palko W.A., Fielder R.S., Young P.F. Investigation of the use of friction stir processing to repair and locally enhance the properties of large NiAl bronze propellers. Materials Science Forum. 2003;426-432:2909—2914. https://doi.org/10.4028/www.scientific.net/MSF.426-432.2909
25. Oh-Ishi K., Zhilyaev A.P., McNelley T.R. A microtexture investigation of recrystallization during friction stir processing of as-cast NiAl bronze. Metallurgical and Materials Transactions A. 2006;37(7):2239—2251. https://doi.org/10.1007/BF02586143
26. Barlas Z., Uzun H. Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets. Journal of Achievements in Materials and Manufacturing Engineering. 2008;30(2):182—186.
27. Heidarzadeh A. Saeid T., Klemm V., Chabok A., Pei Y. Effect of stacking fault energy on the restoration mechanisms and mechanical properties of friction stir welded copper alloys. Materials & Design. 2019;162:185—197. https://doi.org/10.1016/j.matdes.2018.11.050
28. Galvão I., Loureiro A., Rodrigues D. M. Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 2016;21(7):523—546. https://doi.org/10.1080/13621718.2015.1118813
29. Zoeram A.S., Anijdan S.H.M., Jafarian H.R., Bhattacharjee T. Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior. Materials Science and Engineering: A. 2017;687:288—297. https://doi.org/10.1016/j.msea.2017.01.071
30. Narasimharaju S., Sankunny S. Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/Pure copper. Engineering Solid Mechanics. 2019;7(3):217—228. https://doi.org/10.5267/j.esm.2019.5.002
31. Avettand-Fènoël M.N., Nagaoka T., Marinova M., Taillard R. Upon the effect of Zn during friction stir welding of aluminum-copper and aluminum-brass systems. Journal of Manufacturing Processes. 2020;58: 259—278. https://doi.org/10.1016/j.jmapro.2020.08.006
32. Ni D.R., Xiao B.L., Ma Z.Y., Qiao Y.X., Zheng Y.G. Corrosion properties of friction—stir processed cast NiAl bronze. Corrosion Science. 2010;52(5):1610—1617. https://doi.org/10.1016/j.corsci.2010.02.026
33. Li Y., Lian Y., Sun Y. Cavitation erosion behavior of friction stir processed nickel aluminum bronze. Journal of Alloys and Compounds. 2019;795:233—240. https://doi.org/10.1016/j.jallcom.2019.04.302
34. Lv Y., Nie B., Wang L., Cui H., Li L., Wang R., Lyu F. Optimal microstructures on fatigue properties of friction stir processed NiAl bronze alloy and its resistant fatigue crack growth mechanism. Materials Science and Engineering: A. 2020;771:138577. https://doi.org/10.1016/j.msea.2019.138577
35. He D.Q., Lai R.L., Xu Sh.H., Yang K.Y., Ye Sh.Y., Wang J., Zhu J.M., Suet B. Microstructure and mechanical properties of Cu—Cr—Zr alloy by friction stir welding. Advanced Materials Research. 2012;602-604:608—611. https://doi.org/10.4028/www.scientific.net/AMR.602-604.608
36. Wang Y.D., Zhu S.Z., Xie G.M., Wu L.H., Xue P., Ni D.R., Xiao B.L., Ma Z.Y. Realising equal-strength welding with good conductivity in Cu—Cr—Zr alloy via friction stir welding. Science and Technology of Welding and Joining. 2021;26(6):448—454. https://doi.org/10.1080/13621718.2021.1935151
37. Nikityuk Yu.N., Grigorenko G.M., Zelenin V.I., Zelenin E.V., Poleshchuk M.A. Technology for the restoration of slab molds of continuous casters using friction stir surfacing. Sovremennaya elektrometallurgiya. 2013;(3): 51—55. (In Russ.).
38. Grigorenko G.M., Adeeva L.I., Tunik A.Yu., Poleshchuk M.A., Zelenin V.I., Zelenin E.V. Refurbishment of slab copper crystallizers of continuous casting machines. Structure and properties of metal in the joint zone. Sovremennaya elektrometallurgiya. 2015;(1):44—49.
39. Lezhnin N.V., Makarov A.V., Volkova E.G., Valiullin A.I., Kotelnikov A.B., Vopneruk A.A. Realizing ultrafine grain structure of Cu—Cr—Zr alloy via friction stir welding/processing. Letters on Materials. 2022;12(4):428—432. https://doi.org/10.22226/2410-3535-2022-4-428-432
40. Lai R., Li X., He D., Lin J., Li J., Lei Q. Microstructures evolution and localized properties variation of a thick friction stir welded CuCrZr alloy plate. Journal of Nuclear Materials. 2018;510;70—79. https://doi.org/10.1016/j.jnucmat.2018.07.055
41. Осинцев О.Е., Федоров В.Н. Медь и медные сплавы. Отечественные и зарубежные марки: Справочник. 2-е изд., перераб. и доп. М.: Инновационное машиностроение, 2016. 360 с.
42. Morozova A., Mishnev R., Belyakov A., Kaibyshev R. Microstructure and properties of fine grained Cu—Cr—Zr alloys after termo-mechanical treatments. Reviews on Advanced Materials Science. 2018;54;56—92. https://doi.org/10.1515/rams-2018-0020
43. Khomskaya I.V., Zel’dovich V.I., Frolova N.Y., Abdullina D.N., Kheifets A.E. Investigation of Cu5Zr particles precipitation in Cu—Zr and Cu—Cr—Zr alloys subjected to quenching and high strain rate deformation. Letters on Materials. 2019;9(4):400—404. https://doi.org/10.22226/2410-3535-2019-4-400-404
44. Edwards D.J., Singh B.N., Tähtinen S. Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy. Journal of Nuclear Materials. 2007;367-370:904—909. https://doi.org/10.1016/j.jnucmat.2007.03.064
45. Park J.-Y., Lee J.-S., Choi B.-K., Hong B.G., Jeong Y.H. Effect of cooling rate on mechanical properties of aged ITER-grade CuCrZr. Fusion Engineering and Design. 2008;83:1503—1507. https://doi.org/10.1016/j.fusengdes.2008.07.006
46. Zel’dovich V.I., Khomskaya I.V., Frolova N.Yu., Kheifets A.E., Shorokhov E.V., Nasonov P.A. Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging. Physics of Metals and Metallography. 2013;114(5):411—418. https://doi.org/10.1134/S0031918X13050141
Review
For citations:
Makarov A.V., Lezhnin N.V., Kotelnikov A.B., Vopneruk A.A., Korobov Yu.S., Valiullin A.I., Volkova E.G. Restoration of continuous casting machine mold copper plates made of Cr–Zr bronze using multi-pass friction stir lap welding. Izvestiya. Non-Ferrous Metallurgy. 2023;(6):66-83. https://doi.org/10.17073/0021-3438-2023-6-66-83