Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Influence of partial titanium substitution by its hydride on structure and mechanical properties of TNM-B1 heat-resistant alloy, obtained by SHS powder hot isostatic pressing

https://doi.org/10.17073/0021-3438-2023-6-54-65

Abstract

This paper investigates the influence of partial substitution of titanium by its hydride on the microstructure and mechanical properties of TNM-B1 alloy obtained by powder metallurgy technology. The impact of the Ti:TiH2 ratio in the reaction mixture and heat treatment modes on the microstructure and mechanical properties of TNM-B1+1%Y2O3 alloy, obtained using high-energy ball milling (HEBM), selfpropagating high-temperature synthesis (SHS), and hot isostatic pressing (HIP) methods, has been examined. It was observed that a 10 % substitution of titanium with its hydride in the reaction mixtures reduces the oxygen content in SHS products from 1 % to 0.8 % due to the generation of a reducing atmosphere during the decomposition of TiH2 in the combustion wave. When the Ti : TiH2 ratio is 90 : 10, highest mechanical properties of TNM-B1+1%Y2O3 alloy were achieved: a compressive strength (σu) of 1200±15 MPa and a yield strength (YS) of 1030±25 MPa. An increase in the proportion of TiH2 results in a higher content of oxygen impurity, leading to the formation of Al2O3, which reduces the strength and ductility of the material. With additional heat treatment of TNM-B1+1%Y2O3 alloy, the globular structure transforms into a partially lamellar one, leading to an increase in σu by 50–300 MPa, depending on the TiH2 content. This attributed to a decrease in the average grain size and a reduction in dislocation mobility during deformation.

About the Authors

G. M. Markov
National University of Science and Technology “MISIS”
Russian Federation

Georgy M. Markov – Junior Research Scientist of the “In situ Diagnostics of Structural Transformations” Laboratory of Scientific Educational Center of Self Propagating High-Temperature Synthesis (SEC SHS),

4, build. 1, Leninskiy Prosp., Moscow, 119049.



P. A. Loginov
National University of Science and Technology “MISIS”
Russian Federation

Pavel A. Loginov – Cand. Sci. (Eng.), Senior Research Scientist of the “In situ Diagnostics of Structural Transformations” Laboratory of SEC SHS,

4, build. 1, Leninskiy Prosp., Moscow, 119049.



N. V. Shvyndina
National University of Science and Technology “MISIS”
Russian Federation

Nataliya V. Shvyndina – Leading Engineer of SEC SHS,

4, build. 1, Leninskiy Prosp., Moscow, 119049.



F. A. Baskov
National University of Science and Technology “MISIS”; JSC “Composit”
Russian Federation

Fedor A. Baskov – Cand. Sci. (Eng.), Research Scientist of the “In situ Diagnostics of Structural Transformations” Laboratory of SEC SHS; Head of Sector,

4, build. 1, Leninskiy Prosp., Moscow, 119049;

4, Pionerskaya Str., Moscow region, Korolev, 141074.



E. A. Levashov
National University of Science and Technology “MISIS”
Russian Federation

Evgeny A. Levashov – Dr. Sci. (Eng.), Professor, Full Member of Russian Academy of Natural Science, Head of Department of Powder Metallurgy and Functional Coatings, Head of SEC SHS,

4, build. 1, Leninskiy Prosp., Moscow, 119049.



References

1. Burtscher M., Klein T., Lindemann J., Lehmann O., Fellmann H., Güther V., Clemens H., Mayer S. An advanced TiAl alloy for high-performance racing applications. Materials. 2020;13(21):4720. https://doi.org/10.3390/ma13214720

2. Zaitsev A.A., Kaplanskii Y.Y., Sentyurina Z.A., Levashov E.A., Kasimtsev A.V., Pogozhev Y.S., Yudin S.N., Sviridova T.A., Malyarov A.V. Production of a sintered alloy based on the TiAl intermetallic compound: Pt. 2. Investigation into forming and sintering processes. Russian Journal of Non-Ferrous Metals. 2016;57:113—123. https://doi.org/10.3103/S1067821216020139

3. Kasimtsev A.V., Yudin S.N., Sviridova T.A., Malyarov A.V., Zaitsev A.A., Sentyurina Zh.A., Kaplanskii Yu.Yu., Pogozhev Yu.S., Levashov E.A. Production of a sintered alloy based on the TiAl intermetallic compound. Pt. 1: Calcium-hydride fabrication technology of the Ti—47Al—2Nb—2Cr powder alloy and its properties. Russian Journal of Non-ferrous Metals. 2015;56:548—554. https://doi.org/10.3103/S1067821215050065

4. Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Materials at High Temperatures. 2016;33(4-5):549—559. https://doi.org/10.1080/09603409.2016.1183068

5. Rittinghaus S.K., Zielinski J. Influence of process conditions on the local solidification and microstructure during laser metal deposition of an intermetallic TiAl alloy (GE4822). Metallurgical and Materials Transactions: A. 2021;52:1106—1116. https://doi.org/10.1007/s11661-021-06139-2

6. Ostrovskaya O., Badini C., Deambrosis S.M., Miorin E., Biamino S., Padovano E. Protection from oxidation of second and third generation TiAl intermetallic alloys by magnetron sputtering deposition of a TiAl/TiAlN coating. Materials & Design. 2021;208:109905. https://doi.org/10.1016/j.matdes.2021.109905

7. Abdoshahi N., Dehghani M., Hatzenbichler L., Spoerk-Erdely P., Ruban A.V., Musi M., Mayer S., Spitaler J., Holec D. Structural stability and mechanical properties of TiAl + Mo alloys: A comprehensive ab initio study. Acta Materialia. 2021; 221:117427. https://doi.org/10.1016/j.actamat.2021.117427

8. Pol’kin I.S., Grebenyuk O.N., Salenkov V.S. Intermetallic compounds based on titanium. Tekhnologiya legkikh splavov. 2010;2:5—15. (In Russ.). https://cyberleninka.ru/article/n/intermetallidy-na-osnove-titana-1

9. Kamyshnykova K., Lapin J. Vacuum induction melting and solidification of TiAl-based alloy in graphite crucibles. Vacuum. 2018;154:218—226. https://doi.org/10.1016/j.vacuum.2018.05.017

10. Siheng G., Xianjuan D., Xuan X., Yong X. Effect of ball milling speed and sintering temperature on microstructure and properties of TiAl alloy prepared by powder metallurgy. Procedia Manufacturing. 2020;50:355—361. https://doi.org/10.1016/j.promfg.2020.08.066

11. Knörlein J., Franke M.M., Schloffer M., Berger T., Körner C. Microstructure and mechanical properties of additively manufactured γ-TiAl with dual microstructure. Intermetallics. 2023;161:107978. https://doi.org/10.1016/j.intermet.2023.107978

12. Wu X. Review of alloy and process development of TiAl alloys. Intermetallics. 2006;14(10-11):1114—1122. https://doi.org/10.1016/j.intermet.2005.10.019

13. Loginov P.A., Kaplanskii Y.Y., Markov G.M., Patsera E.I., Vorotilo K.V., Korotitskiy A.V., Shvyndina N.V., Levashov E.A. Structural and mechanical properties of Ti—Al—Nb—Mo—B alloy produced from the SHS powder subjected to high-energy ball milling. Materials Science and Engineering: A. 2021;814:141153. https://doi.org/10.1016/j.msea.2021.141153

14. Taguchi K., Ayada M., Ishihara K.N., Shingu P.H. Nearnet shape processing of TiAl intermetallic compounds via pseudoHIP-SHS route. Intermetallics. 1995;3(2):91—98. https://doi.org/10.1016/0966-9795(95)92673-N

15. Aguilar J., Schievenbusch A., Kättlitz O. Investment casting technology for production of TiAl low pressure turbine blades—Process engineering and parameter analysis. Intermetallics. 2011;19(6):757—761. https://doi.org/10.1016/j.intermet.2010.11.014

16. Lagos M.A., Agote I. SPS synthesis and consolidation of TiAl alloys from elemental powders: Microstructure evolution. Intermetallics. 2013;36:51—56. https://doi.org/10.1016/j.intermet.2013.01.006

17. Busurina M.L., Umarov L.M., Kovalev I.D., Sachkova N.V., Busurin S.M., Vadchenko S.G., Sychev A.E. Features of structure and phase formation in the Ti—Al—Nb system in the thermal explosion mode. Combustion, Explosion and Shock Waves. 2016;52(6): 659—664. https://doi.org/10.15372/FGV20160605

18. Mukasyan A.S., Rogachev A.S. Combustion behavior of nanocomposite energetic materials. Energetic Nanomaterials. 2016;163—192. https://doi.org/10.1016/B978-0-12-802710-3.00008-8

19. Rak Z.S., Walter J. Porous titanium foil by tape casting technique. Journal of materials processing technology. 2006;175(1-3):358—363. https://doi.org/10.1016/j.jmatprotec.2005.04.066

20. Bidaux J.E., García-Gómez J., Hamdan H., Zufferey D., Rodríguez-Arbaizar M., Girard H., Carreno-Morelli E. Tape casting of porous titanium thin sheets from titanium hydride. In: Proceedings of the Euro PM2011 Congress & Exhibition. (Barcelona, Spain. 9—12 October 2011). 2011. P. 2.

21. Samal S., Cho S., Park D.W., Kim H. Thermal characterization of titanium hydride in thermal oxidation process. Thermochimica Аcta. 2012;542:46—51. https://doi.org/10.1016/j.tca.2012.02.010

22. Peillon N., Fruhauf J.B., Gourdet S., Feraille J., Saunier S., Desrayaud C. Effect of TiH2 in the preparation of MMC Ti based with TiC reinforcement. Journal of Alloys and Compounds. 2015; 619:157—164. https://doi.org/10.1016/j.jallcom.2014.09.014

23. Azevedo C.R.F., Rodrigues D., Neto F.B. Ti—Al—V powder metallurgy (PM) via the hydrogenation-dehydrogenation (HDH) process. Journal of Alloys and Compounds. 2003;353(1-2):217—227. https://doi.org/10.1016/S0925-8388(02)01297-5

24. Kurbatkina V.V., Patsera E.I., Bodyan A.G., Levashov E.A. Preparation of submicron TiAl-based powder in thermal explosion mode. Tsvetnye metally. 2017;2:68—73. (In Russ.). https://doi.org/10.17580/tsm.2017.02.11

25. Xu W.C., Huang K., Wu S.F., Zong Y.Y., Shan D.B. Influence of Mo content on microstructure and mechanical properties of β-containing TiAl alloy. Transactions of Nonferrous Metals Society of China. 2017;27(4):820—828. https://doi.org/10.1016/S1003-6326(17)60094-3

26. Pan Y., Lu X., Liu C., Hui T., Zhang C., Qu X. Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering. Intermetallics. 2020;125:106891. https://doi.org/10.1016/j.intermet.2020.106891

27. Li Z., Luo L., Su Y., Wang B., Wang L., Liu T., Yao M., Liu C., Guo J., Fu H. A high-withdrawing-rate method to control the orientation of (γ + α2) lamellar structure in a β-solidifying γ-TiAl-based alloy. Materials Science and Engineering: A. 2020;857:144078. https://doi.org/10.1016/j.msea.2022.144078

28. Qiang F., Kou H., Tang B., Song L., Li J. Effect of cooling rate on microstructure evolution of Ti—45Al—8.5—Nb0.2—W0.2—B0.02—Y alloy during multi-step heat treatment. Materials Characterization. 2018;145:210—217. https://doi.org/10.1016/j.matchar.2018.08.031


Review

For citations:


Markov G.M., Loginov P.A., Shvyndina N.V., Baskov F.A., Levashov E.A. Influence of partial titanium substitution by its hydride on structure and mechanical properties of TNM-B1 heat-resistant alloy, obtained by SHS powder hot isostatic pressing. Izvestiya. Non-Ferrous Metallurgy. 2023;(6):54-65. https://doi.org/10.17073/0021-3438-2023-6-54-65

Views: 286


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)