Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of severe plastic deformation on the structure and properties of the Zn–1%Li– 2%Mg alloy

https://doi.org/10.17073/0021-3438-2023-6-35-43

Abstract

Through the optimization of processing parameters, including pressure, temperature, and deformation degree, a high pressure torsion (HPT) regime was identified. This regime allows for the creation of a unique microstructure in the biodegradable Zn–1%Li–2%Mg alloy, which exhibits exceptional physical and mechanical properties. Following 10 revolutions of HPT treatment (resulting in an accumulated deformation degree, γ = 571) at the temperature of 150 °C and an applied pressure of 6 GPa, the Zn–1%Li–2%Mg alloy displayed notable mechanical characteristics, including a high yield strength (~385 MPa), ultimate tensile strength (~490 MPa), and ductility (44 %) during tensile tests. To elucidate the underlying reasons for these remarkable mechanical properties, an examination of the alloy’s microstructure was conducted employing electron microscopy and X-ray phase analysis (XPA). The study revealed the formation of a distinct microstructure characterized by alternating bands of the α-phase Zn, a mixture of Zn and ~LiZn3 phases, as well as the α-phase Zn containing Mg2Zn11 particles, as a consequence of HPT treatment. Additionally, it was observed that HPT treatment induced a dynamic strain aging process, leading to the precipitation of Zn particles in the LiZn3 phase and the precipitation of Mg2Zn11 and β-LiZn4 particles in the Zn phase. These precipitated particles exhibited a nearly spherical shape. The application of the XPA method helped to confirm that the Zn phase becomes the predominant phase during HPT treatment, and microscopy data showed the formation of an ultra-fine grained (UFG) structure within this phase. A comprehensive analysis of the hardening mechanisms, based on the newly acquired microstructural insights, revealed that enhanced strength and ductility of the Zn–1%Li–2%Mg UFG alloy can be attributed primarily to the effects of dispersion, grain boundary, and heterodeformation-induced hardening, including dislocation strengthening.

About the Authors

V. D. Sitdikov
LLC RN-BashNIPIneft; Institute of Physics of Molecules and Crystals of Ufa Research Center of the Russian Academy of Sciences
Russian Federation

Vil’ D. Sitdikov – Dr. Sci. (Phys.-Math.), Expert; Senior Researcher,

86/1, Lenina Str., Ufa, 450006;

151, Oktyabrya Prosp., Ufa, 450075.



E. D. Khafizova
Institute of Physics of Molecules and Crystals of Ufa Research Center of the Russian Academy of Sciences; Ufa University of Science and Technologies
Russian Federation

El’vira D. Khafizova – Cand. Sci. (Eng.), Senior Researcher; Associate Professor of the Department of Materials Science and Physics of Metals, Senior Researcher at the Research Laboratory “Metals and Alloys under Extreme Impacts”,

151, Oktyabrya Prosp., Ufa, 450075;

32, Zaki Validi Str., Ufa, 450076.



M. V. Polenok
Institute of Physics of Molecules and Crystals of Ufa Research Center of the Russian Academy of Sciences; Ufa University of Science and Technologies
Russian Federation

Milena V. Polenok – Laboratory Assistant; Undergraduate, Research Engineer at the Research Laboratory “Metals and Alloys under Extreme Impacts”, 

151, Oktyabrya Prosp., Ufa, 450075;

32, Zaki Validi Str., Ufa, 450076.



References

1. Hernández-Escobar D., Champagne S., Yilmazer H., Dikici B., Boehlert C.J., Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Materialia. 2019;(97):1—22. https://doi.org/10.1016/j.actbio.2019.07.034

2. Huang S., Wang L., ZhengY., Qiao L., Yan Y. In vitro degradation behavior of novel Zn—Cu—Li alloys: Roles of alloy composition and rolling processing. Materials & Design. 2021;(212):110288. https://doi.org/10.1016/j.matdes.2021.110288

3. Li W., Dai Y., Zhang D., Lin J., Biodegradable Zn—0.5Li alloys with supersaturated solid solution-aging treatment for implant applications. Journal of Materials Research and Technology. 2023;(24):9292—9305. https://doi.org/10.1016/j.jmrt.2023.05.136

4. Yang L., Li X., Yang L., Zhu X., Wang M., Song Z., Liu H.H., Sun W., Dong R., Yue J. Effect of Mg contents on the microstructure, mechanical properties and cytocompatibility of degradable Zn—0.5Mn—xMg alloy. Journal of Functional Biomaterials. 2023;(14):195. https://doi.org/10.3390/jfb14040195

5. Ye L., Huang H., Sun C., Zhuo X., Dong Q., Liu H., Ju J., Xue F., Bai J., Jiang J. Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn—Mg binary alloys. Journal of Materials Research and Technology. 2022;(16):1673—1685. https://doi.org/10.1016/j.jmrt.2021.12.101

6. Yuan W., Xia D., Wu S., Zheng Y., Guan, Z., Rau J.V. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioactive Materials. 2022;(7):192—216. https://doi.org/10.1016/j.bioactmat.2021.05.018

7. García-Mintegui C., Córdoba L.C., Buxadera-Palomero J., Marquina A., Jiménez-Piqué E., Ginebra M.P., Cortina J.L., Pegueroles M. Zn—Mg and Zn—Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. Bioactive Materials. 2021;6(12):4430—4446. https://doi.org/10.1016/j.bioactmat.2021.04.015

8. Tong X., Zhang D., Zhang X., Su Y., Shi Z., Wang K., Lin J., Li Y., Lin J., Wen C. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn—5Ge alloy for biodegradable implant materials. Acta Biomaterialia. 2018;(82):197—204. https://doi.org/10.1016/j.actbio.2018.10.015

9. Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nature Communications. 2020;(11):401. https://doi.org/10.1038/s41467-019-14153-7

10. Li Zh., Shi Zh.-Zh., Hao Y., Li H., Zhang H., Liu X., Wang L.-N. Insight into role and mechanism of Li on the key aspects of biodegradable Zn—Li alloys: Microstructure evolution, mechanical properties, corrosion behavior and cytotoxicity. Materials Science and Engineering: C. 2020; (114):111049. https://doi.org/10.1016/j.msec.2020.111049

11. Ye L., Liu H., Sun C., Zhuo X., Ju J.; Xue F., Bai J., Jiang J., Xin Y. Achieving high strength, excellent ductility, and suitable biodegradability in a Zn—0.1Mg alloy using room-temperature ECAP. Journal of Alloys and Compounds. 2022;(926):166906. https://doi.org/10.1016/j.jallcom.2022.166906

12. Zhao S., McNamara C.T., Bowen P.K., Verhun N., Braykovich J.P., Goldman J., Drelich J.W. Structural characteristics and in vitro biodegradation of a novel Zn—Li alloy prepared by induction melting and hot rolling. Metallurgical and Materials Transactions A. 2017;(48):1204—1215. https://doi.org/10.1007/s11661-016-3901-0

13. Liu H., Ye L., Ren K., Sun C., Zhuo X., Yan K., Ju J., Jiang J., Xue F., Bai J. Evolutions of CuZn5 and Mg2Zn11 phases during ECAP and their impact on mechanical properties of Zn—Cu—Mg alloys. Journal of Materials Research and Technology. 2022;(21):5032—5044. https://doi.org/10.1016/j.jmrt.2022.11.095

14. Huang H., Liu H., Wang L., Yan K., Li Y., Jiang J., Ma A., Xue F., Bai J. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn—0.6 Mg alloy during multi-pass equal channel angular pressing. Journal of Alloys and Compounds. 2020;(844):155923. https://doi.org/10.1016/j.jallcom.2020.155923

15. Polenok M.V., Khafizova E.D., Islamgaliev R.K. Influence of severe plastic deformation on the mechanical properties of pure zinc. Frontier Materials & Technologies. 2022;(3—2):25—31. https://doi.org/10.18323/2782-4039-2022-3-2-25-31

16. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress Materials Science. 2000;45(2):103—189. https://doi.org/10.1016/S0079-6425(99)00007-9

17. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 1969;2(2):65—71. https://doi.org/10.1107/S0021889869006558

18. Pelton A. The Li—Zn (Lithium—Zinc) system. Journal of Phase Equilibria. 1991;(12):42—45. https://doi.org/10.1007/BF02663672

19. Liu S., Kent D., Doan N., Dargusch M., Wang G. Effects of deformation twinning on the mechanical properties of biodegradable Zn—Mg alloys. Bioactive Materials. 2018;4(1):8—16. https://doi.org/10.1016/j.bioactmat.2018.11.001

20. Zhang Y., Yan Y., Xu X., Lu Y., Chen L., Li D., Dai Y., Kang Y., Yu K., Investigation on the microstructure, mechanical properties, in vitro degradation behavior and biocompatibility of newly developed Zn—0.8%Li—(Mg, Ag) alloys for guided bone regeneration. Materials Science and Engineering: C. 2019;(99):1021—1034. https://doi.org/10.1016/j.msec.2019.01.120

21. Shi Z.Z., Gao X.X., Zhang H.J., Liu X.F., Li H.Y., Zhou C., Yin Y.X., Wang L.N. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties. Bioactive Materials. 2020;5(2):210—218. https://doi.org/10.1016/j.bioactmat.2020.02.010

22. Li Zh., Shi Zh.-Zh., Zhang H.-J., Li H.-F., Feng Y., Wang L.-N. Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn—Li alloy. Journal of Materials Research and Technology. 2021; 80:50—65. https://doi.org/10.1016/j.jmst.2020.10.076

23. Sitdikov V.D., Kulyasova O.B., Sitdikova G.F., Islamgaliev R.K., Yufeng J. Structural-phase transformations in a Zn—Li—Mg alloy subjected to severe plastic deformation by torsion. Frontier Materials & Technologies. 2022;(3—2): 44—55. https://doi.org/10.18323/2782-4039-2022-3-2-44-55

24. Zhuo X., Wu Y., Ju J., Liu H., Jiang J., Hu Z., Bai J., Xue F. Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology. 2022;(17):244—269. https://doi.org/10.1016/j.jmrt.2022

25. Demirtas M., Yanar H., Saray O., Pürçek G. Room temperature superplasticity in fine/ultrafine-grained Zn—Al alloys with different phase compositions. Defect and Diffusion Forum. 2018;(85):72—77. https://doi.org/10.4028/www.scientific.net/ddf.385.72

26. Kumar P., Xu C., Langdon T.G. Mechanical characteristics of a Zn—22%Al alloy processed to very high strains by ECAP. Materials Science and Engineering A. 2006; (429): 324—328. https://doi.org/10.1016/j.msea.2006.05.044

27. Zhu Y.T., Wu X.L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters. 2019;(7): 393—398. https://doi.org/10.1080/21663831.2019.1616331


Review

For citations:


Sitdikov V.D., Khafizova E.D., Polenok M.V. Effect of severe plastic deformation on the structure and properties of the Zn–1%Li– 2%Mg alloy. Izvestiya. Non-Ferrous Metallurgy. 2023;(6):35-43. https://doi.org/10.17073/0021-3438-2023-6-35-43

Views: 716


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)