Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Application of microwave radiation for decrepitation of spodumene from the Kolmozerskoe deposit

https://doi.org/10.17073/0021-3438-2023-6-5-12

Abstract

The lithium-ion industry is experiencing a rapidly growing demand for compounds containing lithium. Spodumene is one of the primary industrial minerals used in the production of this metal. It exists in three polymorphic forms. In its natural state, it is known as α-spodumene, which possesses a high resistance to chemical attack due to its compact structure containing silicon and aluminum oxides. When subjected to microwave radiation, α-spodumene undergoes a transformation, first becoming the γ form and then transitioning to the β form. It is known that the β form can be chemically treated to extract lithium. In light of this, microwave exposure was applied to α-spodumene with the aim of decrepitation, followed by sulfuric acid decomposition of the mineral. The mineral was crushed into different sizes (1.0, 0.5, and 0.25 mm). Temperature changes, induced by both conventional and microwave heating, were analyzed. The heating process was continued for samples of various sizes until a temperature of 1200 °C was reached. Sulfation of calcined samples was carried out for 60 minutes at a temperature of 250 °C. After cooling to 22 °C, distilled water was added and mixed for 120 minutes in closed leaching vessels. To determine the recovery of valuable and associated components, leach cakes and the liquid phase were analyzed using inductively coupled plasma atomic emission spectrometry. Based on the analysis of experimental results, the feasibility of using microwave radiation for decrepitation of spodumene to extract lithium is confirmed. The influence of particle size on phase transformations and, consequently, the degree of lithium extraction from spodumene was investigated. It was found that the recovery of lithium during the microwave action and leaching process for particles smaller than 0.25 mm reached 96.82 %. Microwave heating resulted in lower recovery rates of “harmful” components, such as iron, sodium, and calcium, in the leaching process, leading to a higher purity of the resulting product.

About the Authors

O. N. Krivolapova
National University of Science and Technology “MISIS”
Russian Federation

Olga N. Krivolapova – Cand. Sci. (Eng.), Associate Professor of the Department of Nonferrous Metals and Gold,

4, build. 1, Leninskiy Prosp., Moscow, 119049.



I. L. Fureev
State Research and Design Institute of the Rare Metal Industry (Giredmet JSC)
Russian Federation

Ilya L. Fureev – Head of the Department of the Laboratory for the Complex Processing of Ore Raw Materials,

2, build. 1, Elektrodnaya Str., Moscow, 111524.



References

1. Salakjani N.K., Singh P., Nikoloski A.N., Production of lithium — a literature review Pt. 1: Pretreatment of Spodumene. Mineral Processing and Extractive Metallurgy Review. 2020; 41(5):335—348. https://doi.org/10.1080/08827508.2019.1643343

2. U.S. Geological Survey Mineral commodity summaries 2023. Reston, 2023. 214 p. URL: https://www.kriittisetmateriaalit.fi/wp-content/uploads/2023/02/Mineral-Commodity-Summaries-2023-USGSJan-2023.pdf (accessed: 15.06.2023).

3. Курков А.В., Мамошин М.Ю., Ануфриева С.И., Рогожин А.А. Прорывные технологии прямого извлечения лития из гидроминерального сырья. В сб.: Минерально-сырьевая база металлов высоких технологий. Освоение, воспроизводство, использование: Труды Второй научно-практической конференции с международным участием (г. Москва, 07—08 декабря 2021 г.). М.: ФГБУ «ВИМС», 2021. С. 175—189.

4. Отчет «Обзор рынка сподумена и гидроксида лития в мире». М.: ООО «ИГ «Инфомайн», 2021.179 с. URL: http://www.infomine.ru/research/38/650/ (дата обращения: 17.04.2023).

5. Степанов С.С. Совместное предприятие «Норникеля» и «Росатома» получило право на разработку Колмозерского месторождения. URL: https://www.nornickel.ru/news-and-media/press-releasesand-news/sovmestnoe-predpriyatie-nornikelya-irosatoma-poluchilo-litsenziyu-na-razrabotkukolmozerskogo-mestorozhdeniya/ (дата обращения: 15.05.2023).

6. Kasikov A.G., Shchelokova E.A., Yakovlev K.A., Korovin V.N., Glukhovskaya I.V. Sulfuric acid decomposition of the spodumene concentrate of the Kolmozerskoe deposit. In: Proceedings of the Kola Scientific Center of the Russian Academy of Sciences. Series: Engineering Sciences. 2023;14(2):102—106. (In Russ.). http://dx.doi.org/10.37614/2949-1215.2023.14.2.018

7. Tadesse B., Makuei F., Albijanic B., Dyer L. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering. 2019;131:170—184. https://doi.org/10.1016/j.mineng.2018.11.023

8. Youqi Fan, Hu Li, Chang Lu, Shiliang Chen, Yonglin Yao, Hanbing He, Shuai Ma, Zhen Peng, Kangjun Shao. A novel method for recovering valuable metals from spent lithium-ion batteries inspired by the mineral characteristics of natural spodumene. Journal of Cleaner Production. 2023; 417(7):41—48. https://doi.org/10.1016/j.jclepro.2023.138043

9. Zhang S.J., Cui L.W., Kong L.H., Jiang A.L., Li J.B. Summarize on the lithium mineral resources and their distribution at home and abroad. Nonferrous Metals Engineering. 2020;10(10): 95—104. https://doi.org/10.3969/j.issn.2095-1744.2020.10.015

10. Zhang L., Yang H.P., Liu L., Ding G.F. 2020. Global technology trends of lithium extraction. Conservation and Utilization of Mineral Resources. 2020; 40(5): 24—31. https://doi.org/10.13779/j.cnki.issn1001-0076.2020.05.004

11. Roskill: CO2 emissions from lithium production set to triple by 2025. URL: https://www.greencarcongress.com/2020/10/20201006-roskill.html (accessed: 13.05.2023).

12. Галеева Е.В., Кудряшов Н.М. Редкометальные пегматитовые месторождения зеленокаменного пояса Колмозеро-Воронья (Кольский регион). В сб.: Труды Ферсмановской научной сессии ГИ КНЦ РАН. Апатиты: Геологический институт Кольского научного центра Российской академии наук, 2022. С. 37—41. https://doi.org/10.31241/FNS.2022.19.007

13. Dessemond C., Soucy G., Harvey J.P., Ouzilleau P. Phase transitions in the α–γ–β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching. Minerals. 2020; 10(6):98-107. http://dx.doi.org/10.3390/min10060519

14. Alhadad M.F., Oskierski H.C., Chischi J., Senanayake G., Dlugogorski B.Z. Lithium extraction from β-spodumene: A comparison of keatite and analcime processes. Hydrometallurgy. 2023;215:15-23. https://doi.org/10.1016/j.hydromet.2022.105985

15. Salakjani N.Kh., Singh P., Nikoloski A.N. Acid roasting of spodumene: Microwave vs. conventional heating. Minerals Engineering. 2019;138:161—167. https://doi.org/10.1016/j.mineng.2019.05.003

16. Морозова Л.Н., Базай А.В. Сподумен — основной источник лития редкометалльных пегматитов Колмозерского месторождения. В сб.: Труды Ферсмановской научной сессии ГИ КНЦ РАН. Апатиты: Геологический институт Кольского научного центра Российской академии наук, 2022. С. 369—373. https://doi.org/10.31241/FNS.2020.17.070

17. Yunfeng S., Tianyu Z., Lihua H., Zhongwei Z., Xuheng L., A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate. Hydrometallurgy. 2019;189: 68—75. https://doi.org/10.1016/j.hydromet.2019.105141

18. Rezaee M., Han Sh., Sagzhanov D., Hassas B.V, Slawecki T.M., Agrawal D., Akbari H., Mensah-Biney R. Microwave-assisted calcination of spodumene for efficient, low-cost and environmentally friendly extraction of lithium. Powder Technology. 2022;397:115—132. https://doi.org/10.1016/j.powtec.2021.11.036

19. Quartarolli L., Brandão B., Silveira A., Nakamura M., Toma H. Improving the lithium recovery using leached beta-spodumene residues processed by magnetic nanohydrometallurgy. Minerals Engineering. 2022;186:223-241. https://doi.org/10.1016/j.mineng.2022.107747

20. Nobuyuki M., Shoki K., Eiji М. Microwave-based extractive metallurgy to obtain pure metals: A review. Cleaner Engineering and Technology. 2021;5:13—28. https://doi.org/10.1016/j.clet.2021.100306

21. Zhu Y., Zhang D., Qiu S., Liu C., Yu J., Can J. Lithium recovery from pretreated α-spodumene residue through acid leaching at ambient temperature. Canadian Journal of Chemical Engineering. 2023;101(8):4360—4373. https://doi.org/10.1002/cjce.24806

22. Yoğurtcuoğlu E. Investigation of the effect of cyanidation after microwave roasting treatment on refractory gold/silver ores by characterization studies. Physicochemical Problems of Mineral Processing. 2023;59(1):14—21. https://doi.org/10.37190/ppmp/157487

23. Fureev I.L., Neradovsky Yu. N. Choice of rational technology for processing ore from the Kolmozerskoe deposit based on the study of the chemical and mineral composition of the ore-gathering sample. In: Proceedings of the Kola Scientific Center of the Russian Academy of Sciences. Series: Engineering sciences. 2023;14(1):245—249. (In Russ.). http://dx.doi.org/10.37614/2949-1215.2023.14.1.044

24. Tadesse B., Makuei F., Albijanic B., Dyer L. The beneficiation of lithium minerals from hard rock ores: A review. Minerals Engineering. 2019;131:170—184. https://doi.org/10.1016/j.mineng.2018.11.023

25. Volpi M., Pirola С., Rota С., Joaquim A., Carnaroglio D. Microwave-assisted sample preparation of α-spodumene: A simple procedure for analysis of a complex sample. Minerals Engineering. 2022;187:33—42. http://dx.doi.org/10.1016/j.mineng.2022.107820


Review

For citations:


Krivolapova O.N., Fureev I.L. Application of microwave radiation for decrepitation of spodumene from the Kolmozerskoe deposit. Izvestiya. Non-Ferrous Metallurgy. 2023;(6):5-12. https://doi.org/10.17073/0021-3438-2023-6-5-12

Views: 504


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)