Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Electron-ion-plasma surface modification of hypereutectic silumin

https://doi.org/10.17073/0021-3438-2023-5-69-78

Abstract

In this study, an integrated treatment approach was employed to modify hypereutectic silumin. This method involved electroexplosive alloying of the surface layer with yttrium oxide powder, followed by irradiation with a pulsed electron beam. The experimental data obtained demonstrate that this integrated treatment results in the formation of a submicron-nanocrystalline structure characterized by high-speed cellular crystallization of aluminum within the surface layer. This structure is composed of crystallization cells enriched with aluminum atoms, indicating the creation of a solid solution based on aluminum. The nanocrystalline layers, formed by silicon particles and yttrium oxide, are positioned at the cell boundaries. The study reveals that, as a consequence of integrated treatment with an electron beam energy density of 25 J/cm2 , the wear parameter of the modified samples increases by 7.9±0.6-fold, and the friction coefficient decreases by 1.7±0.15-fold compared to the initial state. Additionally, the microhardness of the modified silumin surface layer increases by 1.5±0.12-fold compared to the initial state. When the electron beam energy density is elevated to 35 J/cm2, the wear parameter of silumin is enhanced by 2.1±0.21-fold, while the friction coefficient increases by 1.13±0.1-fold. However, the microhardness decreases by 1.3±0.13-fold, while still surpassing the specified characteristics of untreated silumin. This investigation postulates that the substantial increase in the wear parameter during integrated treatment may be attributed to the presence of silicon inclusions in the surface layer that did not dissolve during the modification process. These inclusions are surrounded by the high-speed cellular crystallization structure mentioned earlier. 

About the Authors

Yu. A. Shliarova
Siberian State Industrial University
Russian Federation

42 Kirov Str., Novokuznetsk, 654007



V. V. Shlyarov
Siberian State Industrial University
Russian Federation

42 Kirov Str., Novokuznetsk, 654007



D. V. Zaguliaev
Siberian State Industrial University
Russian Federation

42 Kirov Str., Novokuznetsk, 654007



Yu. F. Ivanov
Institute of High-Current Electronics of Siberian Branch of the Russian Academy of Sciences
Russian Federation

2/3 Akademicheskiy Ave., Tomsk, 634055



V. E. Gromov
Siberian State Industrial University
Russian Federation

42 Kirov Str., Novokuznetsk, 654007



References

1. Tutunchilar S., Besharati Givi M.K., Haghpanahi M., Asadi P. Eutectic Al—Si piston alloy surface transformed to modified hypereutectic alloy via FSP. Materials Science and Engineering: A. 2012;534:557—567. https://doi.org/10.1016/j.msea.2011.12.008

2. Mohamed A.M.A., Samuel A.M., Samuel F.H., Doty H.W. Influence of additives on the microstructure and tensile properties of near-eutectic Al—10.8%Si cast alloy. Materials & Design. 2009;30(10):3943—3957. https://doi.org/10.1016/j.matdes.2009.05.042

3. Li Q., Xia T., Lan Y., Li P., Fan L. Effects of rare earth Er addition on microstructure and mechanical properties of hypereutectic Al—20% Si alloy. Materials Science and Engineering: A. 2013;588:97—102. https://doi.org/10.1016/j.msea.2013.09.017

4. Chen M., Meng-Burany X., Perry T.A., Alpas A.T. Micromechanisms and mechanics of ultra-mild wear in Al—Si alloys. Acta Materialia. 2008;56(19):5605—5616. https://doi.org/10.1016/j.actamat.2008.07.043

5. Chen M., Alpas A.T. Ultra-mild wear of a hypereutectic Al—18.5wt.%Si alloy. Wear. 2008;265(1-2):186—195. https://doi.org/10.1016/j.wear.2007.10.002

6. Cao F., Jia Y., Prashanth K.G., Ma P., Liu J., Scudino S., Huang F., Eckert J., Sun J. Evolution of microstructure and mechanical properties of as-cast Al—50Si alloy due to heat treatment and P modifier content. Materials & Design. 2015;74:150—156. https://doi.org/10.1016/j.matdes.2015.03.008

7. Li Q., Xia T., Lan Y., Zhao W., Fan L., Li P. Effect of in situ γ-Al2O3 particles on the microstructure of hypereutectic Al—20%Si alloy. Journal of Alloys and Compounds. 2013;577:232—236. https://doi.org/10.1016/j.jallcom.2013.04.043

8. Wenhai P., Shengzhi H., Jun C., Wei L., Limin Z., Jun D. Surface composite microstructure and improved mechanical property of YG10X cemented carbide induced by high current pulsed electron beam irradiation. International Journal of Refractory Metals and Hard Materials. 2019;78:233—239. https://doi.org/10.1016/j.ijrmhm.2018.09.016

9. Hangyu Y., Yuyong C., Xiaopeng W., Fantao K. Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti—47Al— 2Cr—2Nb alloy fabricated by selective electron beam melting. Journal of Alloys and Compounds. 2018;750: 617—625. https://doi.org/10.1016/j.jallcom.2018.03.343

10. Wei J., Langping W., Xiaofeng W. Studies on surface topography and mechanical properties of TiN coating irradiated by high current pulsed electron beam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2018;436: 63—67. https://doi.org/10.1016/j.nimb.2018.09.003

11. Zou J., Qin Y., Dong C., Wang X., Almin W., Hao S. Numerical simulation of the thermal-mechanical process of high current pulsed electron beam treatment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. 2004;22(3):545—552. https://doi.org/10.1116/1.1697481

12. Gao B., Hao Y., Zhuang W.F., Tu G.F., Shi W.X., Li S.W., Hao S.Z., Dong C., Li M.C. Study on continuous solid solution of Al and Si elements of a high current pulsed electron beam treated hypereutectic Al—17.5Si alloy. Physics Procedia. 2011;18:187—192. https://doi.org/10.1016/j.phpro.2011.06.079

13. Gao B., Hu L., Li S., Hao Y., Zhang Y., Tu G., Grosdidier T. Study on the nanostructure formation mechanism of hypereutectic Al—17.5Si alloy induced by high current pulsed electron beam. Applied Surface Science. 2015;346:147—157. https://doi.org/10.1016/j.apsusc.2015.04.029

14. Hu L., Gao B., Lv J.K., Hao Y., Tu G.F., Hao S.Z., Dong C. The metastable structure of hypereutectic Al—17.5Si alloy surface induced by high current pulsed electron beam. Materials Research Innovations. 2015;19: S5320—S5324. https://doi.org/10.1179/1432891714Z.0000000001102

15. Hao Y., Gao B., Tu G.F., Cao H., Hao S.Z., Dong C. Surface modification of Al—12.6Si alloy by high current pulsed electron beam. Applied Surface Science. 2012;258:2052—2056. https://doi.org/10.1016/j.apsusc.2011.04.104

16. Xia H., Zhang C., Lv P., Cai J., Jin Y., Guan Q. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2018;416:9—15. https://doi.org/10.1016/j.nimb.2017.11.028

17. Tomus D., Qian M., Brice C.A., Muddle B.C. Electron beam processing of Al—2Sc alloy for enhanced precipitation hardening. Scripta Materialia. 2010;63(2): 151—154. https://doi.org/10.1016/j.scriptamat.2010.03.039

18. Bo G., Ning X., Pengfei X. Shock wave induced nanocrystallization during the high current pulsed electron beam process and its effect on mechanical properties. Materials Letters. 2019;237:180—184. https://doi.org/10.1016/j.matlet.2018.11.054

19. Zaguliaev D., Gromov V., Rubannikova Yu., Konovalov S., Ivanov Yu., Romanov D., Semin A. Structure and phase states modification of Al—11Si—2Cu alloy processed by ion-plasma jet and pulsed electron beam. Surface and Coatings Technology. 2020;383:125246. https://doi.org/10.1016/j.surfcoat.2019.125246

20. Zaguliaev D., Konovalov S., Ivanov Yu., Gromov V., Petrikova E. Microstructure and mechanical properties of doped and electron-beam treated surface of hypereutectic Al—11.1%Si alloy. Journal of Materials Research and Technology. 2019;8(5):3835—3842. https://doi.org/10.1016/j.jmrt.2019.06.045

21. Zaguliaev D., Konovalov S., Ivanov Yu., Gromov V. Effect of electron-plasma alloying on structure and mechanical properties of Al—Si alloy. Applied Surface Science. 2019;498:143767. https://doi.org/10.1016/j.apsusc.2019.143767

22. Белов Н.А., Савченко С.В., Хван А.В. Фазовый состав и структура силуминов. М.: МИСИС, 2008. 282 с.

23. Громов В.Е., Загуляев Д.В., Иванов Ю.Ф., Коновалов С.В., Невский С.А., Сарычев В.Д., Будовских Е.А., Рубанникова Ю.А. Структура и упрочнение силумина, модифицированного электронноионной плазмой. Новокузнецк: Изд центр СибГИУ, 2020. 284 с.


Review

For citations:


Shliarova Yu.A., Shlyarov V.V., Zaguliaev D.V., Ivanov Yu.F., Gromov V.E. Electron-ion-plasma surface modification of hypereutectic silumin. Izvestiya. Non-Ferrous Metallurgy. 2023;29(5):69-78. https://doi.org/10.17073/0021-3438-2023-5-69-78

Views: 292


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)