Investigation into the impact of phase composition on the thermal expansion and mechanical properties of Al–Cu–Li alloys
https://doi.org/10.17073/0021-3438-2023-5-57-68
Abstract
The study employed high-temperature X-ray diffraction, quantitative phase analysis, and tensile mechanical property measurements to investigate the relationship between coefficient of thermal expansion (CTE) and phase composition, along with the average yield strengths and Young's moduli of Al–Cu–Li alloys in three different sheet orientations: 1441, V-1461, V-1469, V-1480, and V-1481. The copper content within the solid solution and the mass fractions of the T1(Al2CuLi) and δ′(Al3Li) phases were determined using an innovative technique based on measuring the lattice distance of the α solid solution, Vegard's law, and balance equations for the elemental and phase compositions of the alloys. It was observed that as the lithium-to-copper ratio in the alloys increased from 0.32 to 1.12, the proportion of the δ′(Al3Li) phase increases from 6.3–8.4 wt.% in V-1481, V-1480 and V-1469 alloys to 16.0–17.3 wt.% in 1441 and V-1461 alloys, accompanied by a decrease in the T1(Al2CuLi) phase from 5 to 1 wt.%. This led to an increase in the Young's modulus from 75 to 77 GPa due to higher overall proportion of intermetallic compounds and a reduction in yield strength from 509 to 367 MPa due to the decrease in the T1 phase. This decrease in yield strength resulted from the fact that the hardening effect of the T1 phase was 3–4 times greater than that of the δ′ phase, and this couldn't be offset by an increase in the total intermetallic compound proportion. The observed increase in Young's modulus indicated that the elastic properties of the intermetallic phases were similar, and the rise in the total fraction of intermetallic compounds compensated for the decrease in the T1 phase. Furthermore, it was demonstrated that СTE, as measured based on the thermal expansion of the solid solution, also depended on the characteristics of the intermetallic phases present in the alloy. This expanded the potential interpretations of СTE measurement results.
About the Authors
A. A. AshmarinRussian Federation
49 Leninskiy Prosp., Moscow, 119334
M. I. Gordeeva
Russian Federation
4 Volokolamskoe Highway, Moscow, 125993
S. Ya. Betsofen
Russian Federation
4 Volokolamskoe Highway, Moscow, 125993
A. A. Lozovan
Russian Federation
4 Volokolamskoe Highway, Moscow, 125993
R. Wu
China
145 Nantong Str., Harbin 150001
S. S. Alexandrova
Russian Federation
4 Volokolamskoe Highway, Moscow, 125993
A. A. Selivanov
Russian Federation
17 Radio Str., Moscow, 105005
A. N. Bykadorov
Russian Federation
4 Volokolamskoe Highway, Moscow, 125993
D. A. Prokopenko
Russian Federation
4 Volokolamskoe Highway, Moscow, 125993
References
1. Saringer C., Kickinger C., Munnik F., Schalk N., Tkadletz M. Thermal expansion of magnetron sputtered TiCxN1–x coatings studied by high-temperature X-ray diffraction. Thin Solid Films. 2019;688:137307. https://doi.org/10.1016/j.tsf.2019.05.026
2. Chen C.-L., Thomson R.C. Study on thermal expansion of intermetallics in multicomponent Al—Si alloys by high temperature X-ray diffraction. Intermetallics. 2010;18(9):1750—1757. https://doi.org/10.1016/j.intermet.2010.05.015
3. Yong Xu, Xin Chen, Yili Cao, Kun Lin, Chin-Wei Wang, Qiang Li, Jinxia Deng, Jun Miao, Xianran Xing. Neutron diffraction study on anomalous thermal expansion of CrB2. Chinese Journal of Structural Chemistry. 2023; (January):100009. https://doi.org/10.1016/j.cjsc.2022.100009
4. Dongyu Cen, Bin Wang, Ruixue Chu, Yuanyuan Gong, Guizhou Xu, Fenghua Chen, Feng Xu. Design of (Hf,Ta)Fe2 /Fe composite with zero thermal expansion covering room temperature. Scripta Materialia. 2020;186: 331—335. https://doi.org/10.1016/j.scriptamat.2020.05.048
5. Niu Zhang, Jinghua Li, Xiaoshuai Kong, Mengting She, Peng Guo, Jingjing Sun, Peiling Yuan, Shuaipu Zang, Mingju Chao, Erjun Liang. Negative thermal expansion property in Nb14W3O44. Journal of Materials Research and Technology. 2022;18:3841—3848. https://doi.org/10.1016/j.jmrt.2022.04.083
6. Keith R. Hallama, James Edward Darnbrough, Charilaos Paraskevoulakos, Peter J. Hearda, T. James Marrow, Peter E.J.Flewitt. Measurements by X-ray diffraction of the temperature dependence of lattice parameter and crystallite size for isostatically-pressed graphite. Carbon Trends. 2021;4:100071. https://doi.org/10.1016/j.cartre.2021.100071
7. Kazuma Akikubo, Tyler Kurahashi, Sota Kawaguchi, Masaru Tachibana. Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction. Carbon. 2020;169:307—311. https://doi.org/10.1016/j.carbon.2020.07.027
8. Abhijith Vijay V., Santhy K., Sivakumar G., Rajasekaran B. Thermal expansion and microstructure evolution of atmospheric plasma sprayed NiCrAlY bond coat using in-situ high temperature X-ray diffraction. Surface and Coatings Technology. 2023;452:129132. https://doi.org/10.1016/j.surfcoat.2022.129132
9. Josef Schlacher, Zdenek Chlup, Anna-Katharina Hofer, Raul Bermejo. High-temperature fracture behaviour of layered alumina ceramics with textured microstructure. Journal of the European Ceramic Society. 2023;43(7): 2917—2927. https://doi.org/10.1016/j.jeurceramsoc.2022.11.046
10. Huanbei Chen, Feiyu Zheng, Weizheng Cheng, Peng Tao, Chengyi Song, Wen Shang, Benwei Fu, Tao Deng. Low thermal expansion metal composite-based heat spreader for high temperature thermal management. Materials & Design. 2021;208:109897. https://doi.org/10.1016/j.matdes.2021.109897
11. Hani Manssor Albetran. Thermal expansion coefficient determination of pure, doped, and co-doped anatase nanoparticles heated in sealed quartz capillaries using insitu high-temperature synchrotron radiation diffraction. Heliyon. 2020;6(7):e04501. https://doi.org/10.1016/j.heliyon.2020.e04501
12. Pikea Nicholas A., Løvvika Ole M. Calculation of the anisotropic coefficients of thermal expansion: A first-principles approach. Computational Materials Science. 2019;167:257—263. https://doi.org/10.1016/j.commatsci.2019.05.045
13. Guo Tian, Wu Shusen, Zhou Xiong, Lü Shulin, Xia Lanqing. Effects of Si content and Ca modification on microstructure and thermal expansion property of Mg—Si alloys. Materials Chemistry and Physics. 2020;253:123260. https://doi.org/10.1016/j.matchemphys.2020.123260
14. Wang Xue Yi, Yang Jun, Chi Pei Zhou, Bahonar Ehsan, Tayebi Morteza. Effects of the microstructure and preci pitation hardening on the thermal expansion behavior of ZK60 magnesium alloy. Journal of Alloys and Compounds. 2022;901:163422. https://doi.org/10.1016/j.jallcom.2021.163422
15. Ningning Dong, Jinhui Wang, Hongbin Ma, Peipeng Jin. Effects of Nd content on thermal expansion behavior of Mg—Nd alloys. Materials Today Communication. 2021;29:102894. https://doi.org/10.1016/j.mtcomm.2021.102894
16. Betsofen S.Y., Ashmarin A.A., Terent’ev V.F., Grushin I.A., Lebedev M.A. Phase composition and residual stresses in the surface layers of VNS9-Sh TRIP steel. Russian Metallurgy (Metally). 2020;(11):1129—1136. https://doi.org/10.1134/S0036029520100067
17. Ashmarin A.A., Betsofen S.Y., Lukin E.I. Effect of annealing on the phase composition and the linear thermal expansion coefficient of VNS9-Sh TRIP steel. Russian Metallurgy (Metally). 2022;(11):1397—1402. https://doi.org/10.1134/S0036029522110027
18. Betsofen S.Y., Antipov V.V., Serebrennikova N.Y., Dolgova M.I., Kabanova Yu.A. Phase composition, texture, and anisotropy of the properties of Al—Cu—Li—Mg alloy sheets. Russian Metallurgy (Metally). 2017;2017(10):831— 837. https://doi.org/10.1134/S0036029517100044
19. Kablov E.N., Antipov V.V., Girsh R.I., Serebrennikova N.Yu, Konovalov A.N. Designed layered materials based on sheets of aluminum-lithium alloys and fiberglass in the designs of new generation aircrafts. Vestnik Mashinostroeniya. 2020;(12):46—52. (In Russ.). http://dx.doi.org/10.36652/0042-4633-2020-12-46-52
20. Kablov E.N., Antipov V.V., Oglodkova Yu.S., Ogladkov M.S. Development and application prospects of aluminum—lithium alloys in aircraft and space technology. Metallurgist. 2021;65(1-2):72—81. https://doi.org/10.1007/s11015-021-01134-9
21. Betsofen S.Y., Antipov V.V., Grushin I.A., Knyazev M.I., Khokhlatova L.B., Alekseev A.A. Effect of the composition of Al—Li alloys on the quantitative relation between the δ′(Al3Li), S1(Al2MgLi), and T1(Al2CuLi) phases. Russian Metallurgy (Metally). 2015;(1):51—58. https://doi.org/10.1134/S0036029515010024
Review
For citations:
Ashmarin A.A., Gordeeva M.I., Betsofen S.Ya., Lozovan A.A., Wu R., Alexandrova S.S., Selivanov A.A., Bykadorov A.N., Prokopenko D.A. Investigation into the impact of phase composition on the thermal expansion and mechanical properties of Al–Cu–Li alloys. Izvestiya. Non-Ferrous Metallurgy. 2023;29(5):57-68. https://doi.org/10.17073/0021-3438-2023-5-57-68