Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Microstructure and properties of the GEWZ522K casting magnesium alloy based on the Mg–Gd–Nd–Y–Zn–Zr system

https://doi.org/10.17073/0021-3438-2023-5-34-46

Abstract

The article discusses the solidification and phase composition of the (wt.%) Mg–4.8Gd–2.1Nd–1.6Y–0.4Zn–0.6Zr (GEWZ522K) casting alloy. It is demonstrated that in the as-cast state, the alloy structure comprises primary zirconium particles, dendrites of the magnesium solid solution (αMg), and eutectic intermetallic phases located between dendritic branches. Following solution heat treatment at t = 530±5 °C, the alloy transitions into a single-phase state and can be significantly strengthened through artificial aging after quenching. It is recommended to apply alloy aging at t = 250 °C for 8–10 h or at t = 200 °C for 15–18 h. This approach leads to the maximum strengthening of the alloy, with the best mechanical properties achieved for the alloy aged at t = 250 °C. Regardless of the aging method used, the ultimate tensile strength (UTS) of the samples surpasses 300 MPa, which significantly exceeds that of commercial casting alloys according to GOST 2856-79. The measured corrosion rate for the GEWZ522K alloy is 7.5±0.4 mm/year, that slightly higher than that for the less alloyed commercial alloy ML10 (approximately 2.5 mm/year) tested under similar conditions. Furthermore, the alloy was subjected to tests for ignition resistance when in contact with air. It was observed that with continuous airflow over the specimen’s surface, ignition centers appear at t = 625 °C due to the breakdown of the oxide film, causing the alloy to nearly completely melt. Therefore, the GEWZ522K alloy can be employed as a high-strength casting alloy. However, during the operation of cast parts, particular attention must be paid to safeguarding the surface of these parts against corrosion. 

About the Authors

A. V. Koltygin
National University of Science and Technology “MISIS”
Russian Federation

Andrei V. Koltygin – Cand. Sci. (Eng.), Assistant Prof., Department of Foundry Technologies and Material Art Working (FT&MAW)

4 build 1 Leninskiy Prosp., Moscow, 119049



A. V. Pavlov
National University of Science and Technology “MISIS”
Russian Federation

Aleksandr V. Pavlov – Postgraduate Student, Department
of FT&MAW

4 build 1 Leninskiy Prosp., Moscow, 119049



V. E. Bazhenov
National University of Science and Technology “MISIS”
Russian Federation

Viacheslav E. Bazhenov – Cand. Sci. (Eng.), Assistant Prof.,
Department of FT&MAW

4 build 1 Leninskiy Prosp., Moscow, 119049



O. D. Gnatyuk
National University of Science and Technology “MISIS”
Russian Federation

Olesya D. Gnatyuk – Student, Department of FT&MAW

4 build 1 Leninskiy Prosp., Moscow, 119049



I. I. Baranov
National University of Science and Technology “MISIS”
Russian Federation

Ivan I. Baranov – Student, Department of FT&MAW

4 build 1 Leninskiy Prosp., Moscow, 119049



V. D. Belov
National University of Science and Technology “MISIS”
Russian Federation

Vladimir D. Belov – Dr. Sci. (Eng.), Head of the Department of FT&MAW

4 build 1 Leninskiy Prosp., Moscow, 119049



References

1. Weiler J.P. A review of magnesium die-castings for closure applications. Journal of Magnesium and Alloys. 2019;7(2):297—304. https://doi.org/10.1016/j.jma.2019.02.005

2. Kulekci M.K. Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology. 2008;39:851—865. https://doi.org/10.1007/s00170-007-1279-2

3. Zhang J., Liu S., Wu R., Hou L., Zhang M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg—Gd and Mg—Y systems. Journal of Magnesium and Alloys. 2018;6(3):277—291. https://doi.org/10.1016/j.jma.2018.08.001

4. Yang Y., Xiong X., Chen J., Peng X., Chen D., Pan F. Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys. 2021;9(3):705—747. https://doi.org/10.1016/j.jma.2021.04.001

5. Fan J.F., Yang Ch.L., Han G., Fang S., Yang W.D., Xu B.S. Oxidation behavior of ignition-proof magnesium alloys with rare earth addition. Journal of Alloys and Compounds. 2011;509(5):2137—2142. https://doi.org/10.1016/j.jallcom.2010.10.168

6. Aydin D.S., Bayindir Z., Hoseini M., Pekguleryuz M.O. The high temperature oxidation and ignition behavior of Mg—Nd alloys. Part I: The oxidation of dilute alloys. Journal of Alloys and Compounds. 2013;569:35—44. https://doi.org/10.1016/j.jallcom.2013.03.130

7. Morozova G.I. Phase composition and corrosion resistance of magnesium alloys. Metal Science and Heat Treatment. 2008;50:100—104. https://doi.org/10.1007/s11041-008-9020-9

8. Rokhlin L.L., Dobatkina T.V., Tarytina I.E., Timofeev V.N., Balakhchi E.E. Peculiarities of the phase relations in Mg-rich alloys of the Mg—Nd—Y system. Journal of Alloys and Compounds. 2004;367(1—2):17—19. https://doi.org/10.1016/j.jallcom.2003.08.004

9. Rokhlin L.L. Magnesium alloys containing rare earth metals: Structure and properties. 1st ed. London: CRC Press, 2003. 256 p. https://doi.org/10.1201/9781482265163

10. Gao L., Chen R.S., Han E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. Journal of Alloys and Compounds. 2009;481(1-2): 379—384. https://doi.org/10.1016/j.jallcom.2009.02.131

11. Stulikova I., Smola B., Cizek J., Kekule T., Melikhova O., Kudrnova H. Natural and artificial aging in Mg—Gd binary alloys. Journal of Alloys and Compounds. 2018;738: 173—181. https://doi.org/10.1016/j.jallcom.2017.12.026

12. Wei X., Jin L., Dong S., Wang F., Dong J. Effect of Zn/(Gd + Y) ratio on the microstructure evolution and mechanical properties of Mg—Gd—Y—Zn—Zr alloy. Materials Characterization. 2020;169:110670. https://doi.org/10.1016/j.matchar.2020.110670

13. Zheng J., Yan Z., Ji J., Shi Y., Zhang H., Zhang Z., Xue Y. Effect of heat treatment on mechanical properties and microstructure evolution of Mg—9.5Gd—4Y—2.2Zn—0.5Zr alloy. Journal of Magnesium and Alloys. 2022;10(4):1124— 1132. https://doi.org/10.1016/j.jma.2021.05.018

14. Liu W., Zhou B., Wu G., Zhang L., Peng X., Cao L. High temperature mechanical behavior of low-pressure sandcast Mg—Gd—Y—Zr magnesium alloy. Journal of Magnesium and Alloys. 2019;7(4):597—604. https://doi.org/10.1016/j.jma.2019.07.006

15. Колтыгин А.В., Павлов А.В., Баженов В.Е., Белов В.Д. Высокопрочный литейный магниевый сплав: Патент 2786785 (РФ). 2022.

16. Bazhenov V.E., Koltygin A.V., Sung M.C., Park S.H., Tselovalnik Yu.V., Stepashkin A.A., Rizhsky A.A., Belov M.V., Belov V.D., Malyutin K.V. Development of Mg—Zn—Y—Zr casting magnesium alloy with high thermal conductivity. Journal of Magnesium and Alloys. 2021;9(5):1567—1577. https://doi.org/10.1016/j.jma.2020.11.020

17. Andersson J.O., Helander T., Höglund L., Shi P.F., Sundman B. Thermo-Calc and DICTRA, Computational tools for materials science. CALPHAD. 2002;26(2): 273—312. https://doi.org/10.1016/S0364-5916(02)00037-8

18. Thermo-Calc software TCMG4: TCS Mg-based alloys database. Version 4. https://thermocalc.com/products/databases/magnesium-based-alloys/ (accessed: 01.05.2022).

19. Kirkland N.T., Birbilis N., Staiger M.P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomaterialia. 2012;8(3):925—936. https://doi.org/10.1016/j.actbio.2011.11.014

20. ASTM Standard G1-03. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken: ASTM International, 2011.

21. Zhou B., Liu W., Wu G., Zhang L., Zhang X., Ji H., Ding W. Microstructure and mechanical properties of sandcast Mg—6Gd—3Y—0.5Zr alloy subject to thermal cycling treatment. Journal of Materials Science & Technology. 2020;43:208—219. https://doi.org/10.1016/j.jmst.2020.01.013

22. He S.M., Zeng X.Q., Peng L.M., Gao X., Nie J.F., Ding W.J. Precipitation in a Mg—10Gd—3Y—0.4Zr (wt.%) alloy during isothermal ageing at 250 °C. Journal of Alloys and Compounds. 2006;421(1—2):309—313. https://doi.org/10.1016/j.jallcom.2005.11.046

23. Bazhenov V.E., Sannikov A.V., Saidov S.S., Rizhskii A.A., Koltygin A.V., Belov V.D., Yudin V.A. Effect of alloying elements content and cooling rate on corrosion resistance of ML10. Liteinoe proizvodstvo. 2020;(12): 13—18. (In Russ.).

24. Kubásek J., Vojtěch D. Structural and corrosion characterization of biodegradable Mg—RE (RE = Gd, Y, Nd) alloys. Transactions of Nonferrous Metals Society of China. 2013;23(5):1215—1225. https://doi.org/10.1016/S1003-6326(13)62586-8

25. Bazhenov V.E., Baranov I.I., Lyskovich V.V., Koltygin A.V., Sannikov A.V., Kyaramyan K.A., Belov V.D., Pavlinich S.P. Investigation of castability, mechanical, corrosion properties and flammability of ML-OPB and EWZ43 magnesium alloys. Izvestiya. Non-Ferrous Metallurgy. 2023;29(1):39—55. (In Russ.). https://doi.org/10.17073/0021-3438-2023-1-39-55

26. Tekumalla S., Gupta M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Materials & Design. 2017;113:84—98. https://doi.org/10.1016/j.matdes.2016.09.103


Review

For citations:


Koltygin A.V., Pavlov A.V., Bazhenov V.E., Gnatyuk O.D., Baranov I.I., Belov V.D. Microstructure and properties of the GEWZ522K casting magnesium alloy based on the Mg–Gd–Nd–Y–Zn–Zr system. Izvestiya. Non-Ferrous Metallurgy. 2023;29(5):34-46. https://doi.org/10.17073/0021-3438-2023-5-34-46

Views: 351


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)