Oxidative leaching of rhenium from grinding waste of rhenium-containing superalloys
https://doi.org/10.17073/0021-3438-2023-5-25-33
Abstract
The study investigated the feasibility of oxidative leaching rhenium in the presence of hydrochloric acid from machining waste (grinding waste) derived from products made of ZhS-32VI, a nickel-based heat-resistant alloy containing rhenium. This was achieved through agitation leaching process. The grinding waste fraction size of –0.071 mm, which accounted for the highest yield (49.2 wt.%), was utilized in the experiments. The rhenium leaching process was conducted in two variations: in the first option, grinding waste was mixed with a hydrochloric acid solution at ~100 °C, followed by the addition of hydrogen peroxide to the leaching solution after it had cooled; in the second option, leaching was performed using a hydrochloric acid solution with the gradual addition of hydrogen peroxide solution. The highest degree of rhenium leaching (91.0 %) was achieved in the first option. In this case, the initial concentration of hydrochloric acid was 8 M, and the molar ratio of the added reagents was ν(HCl): ν(H2O2) = 2.7 : 1.0. The kinetics of nickel leaching using a 6 M hydrochloric acid solution at 70 °C, with a solid-to-liquid phase ratio of 1 g : 50 ml, was also examined. The analysis of the kinetic data, processed using the “contracting sphere,” Ginstling–Brounshtein, and Kazeev–Erofeev models, indicates that the nickel leaching process occurs within the kinetic region. Additionally, the kinetics of rhenium leaching from the solid residue obtained after the hydrochloric acid leaching of nickel from grinding waste was investigated. Employing the same kinetic models to analyze the data, it was determined that the limiting stage of this process involves the diffusion of hydrogen peroxide within the rhenium-containing solid residue.
Keywords
About the Authors
I. E. TarganovRussian Federation
Igor E. Targanov – Postgraduate Student of the Department of Technology of Rare Elements and Nanomaterials (TREN)
9 Miusskaya Sq., Moscow, 125047
M. A. Solodovnikov
Russian Federation
Maksim A. Solodovnikov – Student of the Department of TREN
9 Miusskaya Sq., Moscow, 125047
I. D. Troshkina
Russian Federation
Irina D. Troshkina – Dr. Sci. (Eng.), Professor of the Department of TREN
9 Miusskaya Sq., Moscow, 125047
References
1. Kablov E.N., Bondarenko Yu.A., Kolodyazhnyi M.Yu., Surova V.A., Narskii A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya. 2020;4 (104):64—78. (In Russ.). https://doi.org/10.22349/1994-6716-2020-104-4-64-78
2. Палант А.А., Трошкина И.Д., Чекмарев А.М., Костылев А.И. Технология рения. М.: ООО «ГаллеяПринт», 2015. 329 с.
3. Znamenskii V.S, Korzhinskii M.A., Shteinberg G.S., Tkachenko S.I., Yakushev A.I., Laputina I.P., Bryzgalov I.A., Samotoin N.D., Magazina L.O., Kuz’mina O.V., Organova N.I., Rassulov V.A., Chaplygin I.V. Rheniite, ReS2, the natural rhenium disulfide from fumaroles of Kudryavy volcano (Iturup isl., Kurily islands). Zapiski Rossiyskogo Mineralogicheskogo Obshchestva. 2005;134(5):32—39. (In Russ.).
4. Левченко Е.Н., Ключарев Д.С. Нетрадиционные источники критических редких металлов. Труды науч.-практ. конференции «Минерально-сырьевая база металлов высоких технологий. Освоение, воспроизводство, использование» (Москва, 3—4 дек. 2019 г.). М.: ФГБУ «ВИМС», 2020. С. 116—127.
5. Nowotnik A. Nickel-based superalloys (Reference module in materials science and materials engineering). 2016. https://doi.org/10.1016/B978-0-12-803581-8.02574-1
6. Yagi R., Okabe T. Current status of recycling of rhenium and process technologies. Journal of MMIJ. 2016;132: 114—122. https://doi.org/10.2473/journalofmmij.132.114
7. Polyak D.E. USGS metal prices in the United States through 2010: Rhenium. U.S. Geological Survey, Washington DC, 2013. P. 152—154.
8. Koizumi Y., Jianxin Z., Kobayashi T., Yokokawa T., Harada H., Aoki Y., Arai M. Development of next generation Ni-base single crystal superalloys containing ruthenium. Journal of the Japan Institute of Metals and Materials. 2003;67(9): 468—471. https://doi.org/10.2320/jinstmet1952.67.9
9. Srivastava R.R., Kim M.S., Lee J.C., Jha M.K., Kim B.S. Resource recycling of superalloys and hydrometallurgical challenges. Journal of Materials Science. 2014;49: 4671—4686. http://doi.org/10.1007/s10853-014-8219-y
10. Wang X.G., Liu J.L., Jin T., Sun X.F. The effects of ruthenium additions on tensile deformation mechanisms of single crystal superalloys at different temperatures. Materials and Design. 2014;63:286—293. https://doi.org/10.1016/j.matdes.2014.06.009
11. Latief F.H., Kakehi K. Effects of Re content and crystallographic orientation on creep behavior of aluminized Ni-base single crystal superalloys. Materials and Design. 2013;49:485—492. https://doi.org/10.1016/j.matdes.2013.01.022
12. Baikonurov E.G., Usol’tseva G.A., Chernyshova O.V., Drobot D.V. The effect of technological parameters on electrochemical processing of rhenium-containing heat-resistant alloy. Non-ferrous metals. 2017;10:56—60. (In Russ.). https://doi.org/10.17580/tsm.2017.08.08
13. Petrova A.M., Kasikov A.G. Extraction of rhenium from waste processing and operation of heat-resistant nickel superalloys. Aviatsionnye materialy i tekhnologii. 2012;3:9—13. (In Russ.).
14. Касиков А.Г., Петрова A.M. Рециклинг рения. М.: РИОР: ИНФРА-М, 2014. 163 с.
15. Singh Gaur R.P., Wolfe T.A., Braymiller S.A. Recycling of rhenium-containing wire scrap. International Journal of Refractory Metals and Hard Materials. 2015; 50:79—85. http://doi.org/10.1016/j.ijrmhm.2014.11.003
16. Anderson C.D., Taylor P.R., Anderson C.G. Extractive metallurgy of rhenium: A review. Minerals and Metallurgical Processing. 2013;30(1):59—73. http://doi.org/10.1007/BF03402342
17. Agapova L.Ya., Kilibayeva S.K., Zagorodnyaya A.N. Electrochemical processing of metal wastes of rhenium-containing heat-resistant nickel alloys. Solid State Phenomena. 2021;316:631—636. https://doi.org/10.4028/www.scientific.net/SSP.316.631
18. Mamo S., Elie M., Baron M., Simons A., Gonzalez-Rodriguez J. Leaching kinetics, separation, and recovery of rhenium and component metals from CMSX-4 superalloys using hydrometallurgical processes. Separation and Purification Technology. 2019;212:150—160. https://doi.org/10.1016/J.SEPPUR.2018.11.023
19. Таrganov I.E., Troshkina I.D. Kinetics of sulfuric acid leaching of nickel from grinding waste of rhenium containing superalloys. Izvestiya. Non-Ferrous Metallurgy. 2021;27(4):24—31. (In Russ.). https://doi.org/10.17073/0021-3438-2021-4-24-31
20. Zante G., Boltoeva M., Masmoudi A., Barillon R., Trébouet D. Selective separation of cobalt and nickel using a stable supported ionic liquid membrane. Separation and Purification Technology. 2020;252:117477. https://doi.org/10.1016/j.seppur.2020.117477. hal-03419681
21. Free M.L. Hydrometallurgy: Fundamentals and applications. New Jersey, USA: John Wiley & Sons. 2013, 444 p.
22. Ginstling A.M., Brounshtein B.I. Concerning the diffusion kinetics of reactions in spherical particles. Zhurnal prikladnoi khimii. 1950;23:1249—1259. (In Russ.).
Review
For citations:
Targanov I.E., Solodovnikov M.A., Troshkina I.D. Oxidative leaching of rhenium from grinding waste of rhenium-containing superalloys. Izvestiya. Non-Ferrous Metallurgy. 2023;29(5):25-33. https://doi.org/10.17073/0021-3438-2023-5-25-33