Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Effect of structure and phase composition on the physical and mechanical properties of hot extruded titanium alloy Ti–3Al–2.5V tubes

https://doi.org/10.17073/0021-3438-2023-4-60-69

Abstract

This study investigates the impact the hot extrusion process variables on the physical and mechanical properties of Ti–3Al–V alloy The research examines four tube segments extracted from various hot-extruded tubes of Ti–3Al–2.5V alloy, with an outer diameter (OD) of 90 mm and a wall thickness of 20 mm. The manufacturing process involves expanding sleeves with a horizontal hydraulic press to achieve an OD of 195 mm, followed by heating to 850–865 °C prior to extrusion. The tube segments are labeled as 1, 2, 3, and 4, corresponding to their order of production. Our findings demonstrate that an increase in the number of extrusions in the α + β area from tube 1 to tube 4 leads to a reduction in the primary α-phase volume fraction and an increase in the β-transformed structure volume fraction. These changes are attributed to the higher final extrusion temperature resulting from more intense deformation heating during hot tooling (die and mandrel) processes. Additionally, elevating the final extrusion temperature from tube 1 to tube 4 leads to a notable decrease in the residual β-solid solution volume fraction and a reduction in the “sharpness” of the α-phase tangent-oriented texture. The alterations in the structural and phase state of the alloy from tube 1 to tube 4 are found to influence the contact modulus of elasticity and microhardness. These identified relationships can be utilized to optimize the process variables for the extrusion of multiple Ti–3Al–2.5V alloy tubes.

About the Authors

A. G. Illarionov
Ural Federal University named after the First President of Russia B.N. Yeltsin; Institute of Metal Physics named after M.N. Mikheev of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Anatoly G. Illarionov – Cand. Sci. (Eng.), Associate Professor of the Department “Heat Treatment and Physics of Metals”, Ural Federal University named after the First President of Russia B.N. Yeltsin (UrFU); Research Scientist, Institute of Metal Physics named after M.N. Mikheev of the Ural Branch of the Russian Academy of Sciences

19 Mira Str., Yekaterinburg 142432б

18 S. Kovalevskaya Str., Yekaterinburg 620108

 



F. V. Vodolazskiy
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Fedor V. Vodolazskiy – Cand. Sci. (Eng.), Associate Professor of the Department “Heat Treatment and Physics of Metals”

19 Mira Str., Yekaterinburg 142432



S. M. Illarionova
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Svetlana M. Illarionova – Head of the Laboratory of the Department “Heat Treatment and Physics of Metals”

19 Mira Str., Yekaterinburg 142432

Scopus-ID: 56572890900



Ya. I. Kosmatskiy
JSC “The Russian Research Institute of the Tube & Pipe Industries”
Russian Federation

Yaroslav I. Kosmatskiy – Dr. Sci. (Eng.), Deputy General Director for Scientific Work

30 Novorossiyskaya Str., Chelyabinsk 454139

Scopus-ID: 36166718600



N. A. Shirinkina
JSC “Ural Works of Civil Aviation”
Russian Federation

Natalia A. Shirinkina – Head of the Department

2g Bakhchivandzhi Str., Yekaterinburg 620025

Scopus-ID: 57193270781



M. A. Shabanov
Ural Federal University named after the First President of Russia B.N. Yeltsin
Russian Federation

Maksim A. Shabanov – Research Engineer of the Department “Heat Treatment and Physics of Metals”

19 Mira Str., Yekaterinburg 142432



References

1. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства: Справочник. М.: ВИЛС—МАТИ, 2009. 520 с.

2. Pumpyanskiy D.A., Illarionov A.G, Vodolazskiy F.V., Kosmatskiy Y.I., Popov A.A. Promising titanium alloys for manufacture of cold-worked pipes. Metallurg. 2023;1:37—48. https://doi.org/10.52351/00260827_2023_01_37

3. Romantcev B.A., Goncharuk A.V., Aleshchenko A.S., Gamin Yu.V. Production of thick-wall hollow profiles and tubes made of titanium alloys by screw rolling. Izvestiya. Non-Ferrous Metallurgy. 2015;(4):38—41. (In Russ.). https://doi.org/10.17073/0021-3438-2015-4-38-41

4. Pilipenko S.V. Analysis of the influence of cold pipe rolling technological factors on the change in Q-factor distribution along the deformation cone. Izvestiya. NonFerrous Metallurgy. 2019;(3):30—35. (In Russ.). https://doi.org/10.17073/0021-3438-2019-3-30-35

5. Boyer R., Welsch G., Collings E.W. Materials roperties Handbook: Titanium alloys. ASM Int., The Material Information Society, 1994. 1176 p.

6. Chen S., Li X., Xu D. Manufacture of Gr9 titanium alloy tube for small size and extra-thin wall. In: Chinese Materials Conference. High Performance Structural Materials. 2018. Р. 531—538. https://doi.org/10.1007/978-981-13-0104-9_56

7. Pyshmintsev I.Y., Kosmatskii Y.I., Filyaeva E.A., Illarionov A.G., Barannikova N.A. Alloy Ti—3Al—2.5V hot-extruded pipe metal structure and properties. Metallurgist. 2018;62(3-4):374—379. https://doi.org/10.1007/s11015-018-0671-5

8. Li H., Wei D., Zhang H.Q., Yang H., Zhang D., Li G.J. Tooling design—related spatial deformation behaviors and crystallographic texture evolution of high-strength Ti—3Al—2.5V tube in cold pilgering. The International Journal of Advanced Manufacturing Technology. 2019;104: 2851—2862. https://doi.org/10.1007/s00170-019-04151-w

9. Yang Q., Hui S., Ye W., Xu Z., Dai C., Lin Y. Effect of “Q” ratio on texture evolution of Ti—3Al—2.5V alloy tube during rolling. Materials. 2022;15(3):817. https://doi.org/10.3390/ma15030817

10. Никольский Л.А., Фиглин С.З., Бойцов В.В., Калпин Ю.Г., Бахарев А.В. Горячая штамповка и прессование титановых сплавов. М.: Машиностроение, 1975. 285 с.

11. Kosmatskiy Ya.I., Fokin N.V., Filyaeva E.A., Barichko B.V. Deformation ability research of the titanium alloy Ti—3Al—2.5V and the assessment of the technological capability production of hot-extrusion tube from him. Titan. 2016;2(52):18—22. (In Russ.).

12. Kosmatskiy Ya.I., Filyaeva E.A., Fokin N.V., Yakovleva K.Yu. Determination of the production possibilities to preparing a new form of seamless TREX pipes of Ti—3Al—2.5V alloy. Kachestvo v obrabotke materialov. 2016;2:15—22. (In Russ.).

13. Tarin P., Corral N., Simon A.G. Evolution of alpha-beta transformation in Ti—3Al—2,5V alloy. Microstructural changes and properties obtained. In: Proceedings of the 12 th World Conference on Titanium. Beijing: Science Press., 2012. Vol. 1. P. 481—484.

14. Illarionov A.G., Vodolazskiy F.V., Barannikova N.A., Kosmatskiy Y.A., Khudorozhkova Y.V. Influence of phase composition on thermal expansion of Ti—0.4Al, Ti—2.2Al—2.5Zr and Ti—3Al—2.5V alloys. Journal of Alloys and Compounds. 2021;857:158049. https://doi.org/10.1016/j.jallcom.2020.158049

15. Illarionov A.G., Kosmatskii Y.I., Filyaeva E.A. Vodolazskii F.V., Barannikova N.A., Experimental determination of temperature parameters for evaluating the possibility of manufacturing alloy Ti—3Al—2.5V hotextruded tubes. Metallurgist. 2017;9-10(60):983—988. https://doi.org/10.1007/s11015-017-0396-x

16. Аношкин Н.Ф., Борисова Е.А., Бочвар Г.А., Брун М.Я., Глазунов С.Г., Колачев Б.А., Коробов О.С., Мальков А.В., Моисеев В.Н., Ноткин А.Б. и др. Титановые сплавы. Металлография титановых сплавов. М.: Металлургия, 1980. 464 с.

17. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography. 1969;2:65—71.

18. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 1992;7(6):1564—1583. https://doi.org/10.1557/JMR.1992.1564

19. Shao G., Miodownik A.P., Tsakiropoulos P. ω-phase formation in V—Al and Ti—Al—V alloys. Philosophical Magazine A. 1995;71(6):1389—1408.

20. Aurelio G., Fernandez Guillermet A., Cuello G.J., Campo J. Metastable Phases in the Ti—V System: Pt. I. Neutron Diffraction study and assessment of structural properties. Metallurgical and Materials Transactions A. 2002;33A:1307—1317. https://doi.org/10.1007/s11661-002-0057-x

21. Zhelnina A.V., Kalienko M.S., Illarionov A.G., Shchetnikov N.V. Transformation of the structure and parameters of phases during aging of a titanium Ti—10V—2Fe—3Al alloy and their relation to strengthening. Fizika metallov i metallovedenie. 2020;121(12):1220—1226. (In Russ.). https://doi.org/10.1134/S0031918X20120133

22. Fedulov V.N. Prediction of the efficiency of thermal hardening of titanium alloys, Lit’ye i metallurgiya. 2006; 1(37):130—135. (In Russ.).

23. Forney C.E., Meredith S.E. Ti—3Al—2.5V seamless tubing engineering guide. Sandvik special Metals Corp., Kennewick, Wash., USA, 1990. 3rd ed. 144 p.

24. Loginov Y.N., Semenov A.P. Changing the temperature of the tool during hot pressing of copper and brass bars. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2006;4:10—13. (In Russ.).

25. Логинов Ю.Н. Прессование как метод интенсивной деформации металлов и сплавов. Екатеринбург: Изд-во УрФУ, 2016. 156 с. https://elar.urfu.ru/bitstream/10995/40656/1/978-5-7996-1623-6_2016.pdf

26. Weiss I., Semiatin S.L. Thermomechanical processing of alpha titanium alloys — an overview. Materials Science and Engineering A. 1999;263:243—256. https://doi.org/10.1016/S0921-5093(98)01155-1

27. Zwicker U. Titan und titanlegierungen. Berlin, Heidelberg: Springer-Verlag, 1974. 717 р. https://doi.org/10.1007/978-3-642-80587-5


Review

For citations:


Illarionov A.G., Vodolazskiy F.V., Illarionova S.M., Kosmatskiy Ya.I., Shirinkina N.A., Shabanov M.A. Effect of structure and phase composition on the physical and mechanical properties of hot extruded titanium alloy Ti–3Al–2.5V tubes. Izvestiya. Non-Ferrous Metallurgy. 2023;(4):60-69. https://doi.org/10.17073/0021-3438-2023-4-60-69

Views: 328


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)