Features of formation of the Al–Ni–Zr system alloy structure obtained by reducing oxide compounds by aluminothermy using SHS metallurgy
https://doi.org/10.17073/0021-3438-2023-4-24-34
Abstract
This work is focused on establishing the regularity of the effect of zirconium (2.21; 3.29; 3.69 and 6.92 wt.% Zr) on structure formation, the nature of distribution of elements and the microhardness of structural components in the Al–Ni–Zr system alloys obtained by aluminothermy using the SHS metallurgy. Regularities of the formation of structural components and their microhardness depending on the content of zirconium in Al–Ni alloys (50 wt.%) have been identified and scientifically substantiated. Structural components were identified by the methods of electromicroscopic studies and X-ray microanalysis of elements. The structure of the initial alloy consists of Al3Ni2 (β′-phase) and Al3Ni nickel aluminides. Zirconium doping of the alloy in the amount of 2.21 wt.% leads to crystallization of zirconium nickel aluminide Al2(Ni,Zr). With further increase in the content of zirconium (more than 2.21 wt.% Zr), complex alloyed intermetallic compounds crystallize – Zr, W, Si aluminides and Ni zirconides. A regularity was established in the decrease of the solubility of nickel in nickel aluminides Al3Ni2 and Al3Ni and their microhardness as the zirconium content increases in the Al–Ni–Zr alloys from 2.21 to 6.92 wt.%. In nickel aluminide with zirconium Al2(Ni,Zr), this contributes to a decrease in the solubility of Ni, Al and increase in the concentration of Si and Zr. Zirconium doping of the Al–Ni alloy in the amount over 2.21 wt.% contributes to an increase in hardness (HRA), despite a decrease in the microhardness of the metal base (Al3Ni2, Al3Ni and Al2(Ni,Zr)). The main reason for increasing the hardness of the Al–Ni–Zr alloys is the crystallization of complex-alloyed intermetallides – Zr, W, Si aluminides and nickel zirconide, which probably have an increased microhardness. Thus, zirconium doping of the Al–Ni alloy makes it possible to obtain a plastic metal base from nickel aluminides Al3Ni2, Al3Ni and Al2(Ni,Zr) and complex-alloyed intermetallides with high hardness.
Keywords
About the Authors
Kh. RiRussian Federation
Khosen Ri – Dr. Sci. (Eng.), Professor, Department of Foundry and Metal Technology
136 Tikhookeanskaya Str., Khabarovsk 680035
E. Kh. Ri
Russian Federation
Ernst Kh. Ri – Dr. Sci. (Eng.), Professor, Head of the Department of Foundry and Metal Technology
136 Tikhookeanskaya Str., Khabarovsk 680035
M. A. Ermakov
Russian Federation
Mikhail A. Ermakov – Cand. Sci. (Eng.), Associate Professor, Department of Foundry and Metal Technology
136 Tikhookeanskaya Str., Khabarovsk 680035
E. D. Kim
Russian Federation
Evgeniy D. Kim – Cand. Sci. (Eng.), Lecturer, Department “Foundry and Technology of Metals”
136 Tikhookeanskaya Str., Khabarovsk 680035
References
1. Wu D.L., Dahl K.V., Christiansen T.L., Montgomery M., Hald J. Corrosion behaviour of Ni and nickel aluminide coatings exposed in a biomass fired power plant for two years. Surface and Coatings Technology. 2019;(362):355— 365. https://doi.org/10.1016/j.surfcoat.2018.12.129
2. Dey G.K. Physical metallurgy of nickel aluminides. Sadhana. 2003;1(28):247—262. https://doi.org/10.1007/BF02717135
3. Talaş Ş. Nickel aluminides. In: Intermetallic Matrix Composites. Woodhead Publishing, Sawston, 2018. P. 37—69. https://doi.org/10.1016/B978-0-85709-346-2.00003-0
4. Baker I., Munroe P.R. Improving intermetallic ductility and toughness. Journal of Metals. 1988;2(40):28—31. https://doi.org/10.1007/BF03258828
5. Shang Z., Shen J., Wang L., Du Y., Xiong Y., Fu H. Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl— Cr(Mo) eutectic alloy. Intermetallics. 2015;57:25—33. https://doi.org/10.1016/j.intermet.2014.09.012
6. Stoloff N. S., Koch C.C., Liu C.T., Izumi O. High-temperature ordered intermetallic alloys II. In: Materials Research Society Proceedings of the Second Symposium (Boston, MA, Dec. 2—4, 1986.). Troy, NY (USA): Rensselaer Polytechnic Inst., 1987. P. 3—11. https://doi.org/10.1557/PROC-81-3
7. Ponomareva A.V., Vekilov Y.K., Abrikosov I.A. Effect of Re content on elastic properties of B2 NiAl from ab initio calculations. Journal of Alloys and Compounds. 2014; 586:274—278. https://doi.org/10.1016/j.jallcom.2012.12.103
8. Bochenek K., Basista M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Progress in Aerospace Sciences. 2015;79:136—146. https://doi.org/10.1016/j.paerosci.2015.09.003
9. Ameri S., Sadeghian Z., Kazeminezhad I. Effect of CNT addition approach on the microstructure and properties of NiAl—CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics. 2016;76:41—48. https://doi.org/10.1016/j.intermet.2016.06.010
10. Gostishchev V., Ri E., Ri H., Kim E., Ermakov M., Khimukhin S., Deev V., Prusov E. Synthesis of complex-alloyed nickel aluminides from oxide compounds by aluminothermic method. Metals. 2018;6(8):439. https://doi.org/10.3390/met8060439
11. Röyset J., Ryum N. Scandium in aluminium alloys. International Materials Reviews. 2005;1(50):19—44. https://doi.org/10.1179/174328005X14311
12. Michi R.A., Plotkowski A., Shyam A., Dehoff R.R., Babu S.S. Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. International Materials Reviews. 2022;67(3):298—345. https://doi.org/10.1080/09506608.2021.1951580
13. Prusov E.S., Panfilov A.A., Kechin V.A. Role of powder precursors in production of composite alloys using liquid-phase methods. Russian Journal of Non-Ferrous Metals. 2017;58(3):308—316. https://doi.org/10.3103/S1067821217030154
14. Sanin V., Andreev D., Ikornikov D., Yukhvid V. Cast intermetallic alloys by SHS under high gravity. Acta Physica Polonica A. 2011;120(2):331—335. https://doi.org/10.12693/APhysPolA.120.331
15. Amosov A.P., Luts A.R., Latukhin E.I., Ermoshkin A.A. Application of SHS processes for in situ production of aluminum matrix composite materials discretely reinforced with titanium carbide nanoparticles. Review. Russian Journal of Non-Ferrous Metals. 2016;57(2):106— 112. https://doi.org/10.3103/S1067821216020024
16. Tiwary C., Gunjal V., Banerjee D., Chattopadhyay K. Intermetallic eutectic alloys in the Ni—Al—Zr system with attractive high temperature properties. MATEC Web of Conferences. — EDP Sciences. 2014;14:01005. https://doi.org/10.1051/matecconf/20141401005
17. Fukumoto M., Yokota T., Hara M. Formation of Ni aluminide containing Zr by synchronous electrodeposition of Al and Zr and cyclic-oxidation resistance. Journal of the Japan Institute of Metals. 2010;74(9):584—591.
18. Wang L., Yao Ch., Shen J., Zhang Yu. Microstructures and compressive properties of NiAl—Cr (Mo) and NiAl— Cr eutectic alloys with different Fe contents. Materials Science and Engineering: A. 2019;744:593—603. https://doi.org/10.1016/j.msea.2018.12.085
19. Левашов Е.А. Перспективные материалы и технологии самораспространяющегося высокотемпературного синтеза. М.: Изд. дом МИСИС, 2011. 377 с.
20. Hassan A.I., El-Fawakhry M.K., Hamed A., Mattar T. Monitoring the effect of alloying elements segregation in Fe Mn Ni Al high еntropy alloy. Journal of Physics: Conference Series. 2022;2368(1):012010.1—7. https://doi.org/10.1088/1742-6596/2368/1/012010
21. Khimukhin S.N., Kim E.D., Ri E.H. Synthesis of NiAl composite alloys by metallothermy method. Materials Today: Proceedings. 2019;19:2278—2282. https://doi.org/10.1016/j.matpr.2019.07.597
22. Ri E.Kh., Ri Kh., Kim E.D., Ermakov M.A. The structure, segregation and microhardness of the structural components of the Al—Ni—Zr alloys synthesized from nickel oxide NiO and brazilite concentrate by means of SHS metallurgy. Tsvetnye Metally. 2021;(7):58—64. (In Russ.). https://doi.org/10.17580/tsm.2021.07.07
23. Agafonov S.N., Krasikov S.A., Ponomarenko A.A., Ovchinnikov L.A. Phase Formation in the Aluminothermic Reduction of ZrO2. Inorganic Materials. 2012; 48(8):813—820. https://doi.org/10.1134/S0020168512070011
24. Bazhin V.Y., Kosov Y.I., Lobacheva O.L., Dzhevaga N.V. Synthesis of aluminum-based scandium—yttrium master alloys. Russian Metallurgy (Metally). 2015;(7):516—520. https://doi.org/10.1134/S0036029515070034
Review
For citations:
Ri Kh., Ri E.Kh., Ermakov M.A., Kim E.D. Features of formation of the Al–Ni–Zr system alloy structure obtained by reducing oxide compounds by aluminothermy using SHS metallurgy. Izvestiya. Non-Ferrous Metallurgy. 2023;(4):24-34. https://doi.org/10.17073/0021-3438-2023-4-24-34