Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Consumable additive FDM models in the production of aluminum alloy castings

https://doi.org/10.17073/0021-3438-2023-4-5-14

Abstract

This article describes the results of a study aimed at improving production technology of experimental castings from aluminum alloys by investment casting using models produced by 3D printing. The consumable models were produced using fused deposition modeling (FDM). Biodegradable polylactide (PLA) was used as a material for the models. In order to decrease the surface roughness of consumable PLA  model.  chemical  post-treatment  by  dichloromethane  needs  to  be  performed.  After  immersion  of  the  model  into the solvent for 10s, its surface becomes smooth and glossy. Three-point static bending tests of PLA plates demonstrated a mechanical strength of average ~45.1 MPa. A thermomechanical analysis of polylactide demonstrated that in the course of heating of ceramic shell in excess of 150 °C, the polylactide model begins to expand intensively by exerting significant pressure on the ceramic shell. In order to decrease stress during the removal of polylactide model from ceramic mold, the heating time in the range of 150–300 °C needs to be heated to a maximum. The use of hollow consumable casting models with a cellular structure not higher than 30 % is also sensible. The stresses on the shell will not exceed its strength. Characteristic  temperature  properties  of  PLA  plastic  thermal  destruction  were detected using thermogravimetric analysis. Polylactide was established to completely burn out upon  heating  to 500  °C  leaving  no ash residue. Analysis of the results identified the burning modes of polylactide models from ceramic molds. Using a Picaso 3D Designer printer (Russia), the PLA models were printed used for production of experimental castings from aluminum alloys. It was revealed that the surface roughness (Ra) of a casting produced using a consumable model treated by dichloromethane decreases by 81.75 %: from 13.7 to 2.5 μm.

About the Authors

M. S. Varfolomeev
Moscow Aviation Institute (National Research University)
Russian Federation

Maksim S. Varfolomeev – Cand. Sci. (Eng.), Assistant Professor, Department 1101

4 Volokolamskoe shosse, Moscow 125993



I. A. Petrov
Moscow Aviation Institute (National Research University)
Russian Federation

Igor’ A. Petrov – Cand. Sci. (Eng.), Assistant Professor, Department 1101

4 Volokolamskoe shosse, Moscow 125993



References

1. Rosochowski A., Matuszak A. Rapid tooling: The state of the art. Journal of Materials Processing Technology. 2000;106(1-3):191—198. https://doi.org/10.1016/S0924-0136(00)00613-0

2. Harun W. S. W., Safian S., Idris M. H. Evaluation of ABS patterns produced from FDM for investment casting process. WIT Transactions on Engineering Sciences. 2009;64(3):319—328. https://doi.org/10.2495/MC090301

3. Bassoli E., Gatto A., Iuliano L., Violante M. 3D Printing technique applied to rapid casting. Rapid Prototyping Journal. 2007;13(3):148—155. https://doi.org/10.1108/13552540710750898

4. Choe C.M., Yang W.C., Kim U.H., Ri B.G., Om M.S. Manufacture of centrifugal compressor impeller using FDM and investment casting. The International Journal of Advanced Manufacturing Technology. 2022;118:173—181. https://doi.org/10.1007/s00170-021-07894-7

5. Gao M., Li L., Wang Q., Ma Z., Li X., Liu Z. Integration of additive manufacturing in casting: Advances, challenges, and prospects. International Journal of Precision Engineering and Manufacturing-Green Technology. 2022;9:305—322. https://doi.org/10.1007/s40684-021-00323-w

6. Kumar P., Ahuja I.P.S., Singh R. Application of fusion deposition modelling for rapid investment casting. A review. International Journal of Materials Engineering Innovation. 2012;3(3—4):204—227. https://doi.org/10.1504/IJMATEI.2012.049254

7. Kumar P., Singh R., Ahuja I.P.S. Investigations for mechanical properties of hybrid investment casting: A case study. Materials Science Forum. 2015;808:89—95. https://doi.org/10.4028/www.scientific.net/MSF.808.89

8. Kumar P, Singh R, Ahuja I.P.S. A framework for developing a hybrid investment casting process. Asian Review of Mechanical Engineering. 2013;2(2):49—55. https://doi.org/10.51983/arme-2013.2.2.2346

9. Badanova N., Perveen A., Talamona D. Concise review on pattern making process in rapid investment casting: Technology, materials & numerical modelling aspect. Advances in Materials and Processing Technologies. 2022;8:966— 978. https://doi.org/10.1080/2374068X.2021.1959113

10. Vyavahare S., Teraiya S., Panghal D., Kumar S. Fused deposition modelling: a review. Rapid Prototyping Journal. 2020; 26(1):176—201. https://doi.org/10.1108/RPJ-04-2019-0106

11. Bakar N.S.A., Alkahari M.R., Boejang H. Analysis on fused deposition modelling performance. Journal of Zhejiang University: Science A. 2010;11(12):972—977. https://doi.org/10.1631/jzus.A1001365

12. Raney K., Lani E., Kalla D.K. Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process. Materials Today: Proceedings. 2017;4:7956—7961. https://doi.org/10.1016/j.matpr.2017.07.132

13. Milde J., Hrušecký R., Zaujec R., Morovic L., Görög A. Research of ABS and PLA materials in the process of fused deposition modeling method. In: 28th DAAAM International Symposium on Intelligent Manufacturing and Automation. Vienna, Austria, 2017. Vol. 28. P. 812—820. https://doi.org/10.2507/28th.daaam.proceedings.114

14. Hanon M.M., Marczis R., Zsidai L. Influence of the 3D printing process settings on tensile strength of PLA and HT-PLA. Periodica Polytechnica Mechanical Engineering. 2020; 65(1): 38—46. https://doi.org/10.3311/PPme.13683

15. Knoop F., Schoeppner V. Mechanical and thermal properties of FDM parts manufactured with Polyamide 12. In: 26th Annual International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2015. P. 935—948.

16. Szykiedans K., Credo W., Osiński D. Selected mechanical properties of PETG 3-D prints. Procedia Engineering. 2017;177:455—461. https://doi.org/10.1016/j.proeng.2017.02.245

17. Xiaoyong S., Liangcheng C., Honglin M., Peng G., Zhanwei B., Cheng L. Experimental analysis of high temperature PEEK materials on 3D printing test. In: 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA) (14—15 Jan. 2017). Changsha, China, 2017. P. 13—16. https://doi.org/10.1109/ICMTMA.2017.0012

18. Domingo-Espin M., Puigoriol-Forcada J.M., GarciaGranada A.A., Llumà J., Borros S., Reyes G. Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Materials & Design. 2015;83:670—677. https://doi.org/10.1016/j.matdes.2015.06.074

19. Nguyen T.T., Tran V.T., Pham T.H.N., Nguyen V.-T., Thanh N.C., Thi H.M.N., Duy N.V.A., Thanh D.N., Nguyen V.T.T. Influences of material selection, infill ratio, and layer height in the 3D printing cavity process on the surface roughness of printed patterns and casted products in investment casting. Micromachines. 2023;14:395. https://doi.org/10.3390/mi14020395

20. Gallien F., Gass V., Mortensen A. Investment casting of periodic aluminum cellular structures using slurry-cast table salt moulds. Materials & Design. 2022;215:110488. https://doi.org/10.1016/j.matdes.2022.110488

21. Ukey K., Hiremath S., Majumder H. Investigation of investment casting pattern using fused deposition modeling. Engineering Science & Technology. 2021;2:201—207. https://doi.org/10.37256/est.222021904

22. Nikitin K.V., Tukabayov B.N., D’yachkov V.N., Nikitin V.I., Deev V.B., Barinov A.Y. Improving the casting process in ceramic forms using additive technologies in manufacturing model kits. Russian Journal of Non-Ferrous Metals. 2021;62(6):675—681. https://doi.org/10.3103/S106782122106016X

23. Alsoufi M.S., Abdulrhman E.E. How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+ Is influenced by measuring direction. American Journal of Mechanical Engineering. 2017;5(5):211—23. https://doi.org/10.12691/ajme-5-5-4

24. Caputo M., Rashwan O., Waryoba D., McDade K. Surface texture and thermo-mechanical properties of material extruded and ironed polylactic acid. Additive Manufacturing. 2022;59:103084. https://doi.org/10.1016/j.addma.2022.103084

25. Kumar P., Ahuja I.S., Singh, R. Effect of process parameters on surface roughness of hybrid investment casting. Progress in Additive Manufacturing. 2016;1:45—53. https://doi.org/10.1007/s40964-016-0004-9

26. Taşcıoğlu E., Kıtay Ö., Keskin A.Ö., Kaynak Y. Effect of printing parameters and post-process on surface roughness and dimensional deviation of PLA parts fabricated by extrusion-based 3D printing. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022;44(139). https://doi.org/10.1007/s40430-022-03429-7

27. Garg P.K., Singh R., Ahuja I., Multi-objective optimization of dimensional accuracy, surface roughness and hardness of hybrid investment cast components. Rapid Prototyping Journal. 2017;23(5):845—857. https://doi.org/10.1108/RPJ-10-2015-0149

28. Panda S.S., Chabra R., Kapil S., Patel V. Chemical vapour treatment for enhancing the surface finish of PLA object produced by fused deposition method using the Taguchi optimization method. SN Applied Sciences. 2020; 2(916):1—13. https://doi.org/10.1007/s42452-020-2740-1

29. Tiwary V.K., Arunkumar P., Deshpande A.S., Rangaswamy N. Surface enhancement of FDM patterns to be used in rapid investment casting for making medical implants. Rapid Prototyping Journal. 2019;25(5):904—914. https://doi.org/10.1108/RPJ-07-2018-0176

30. Hashmi A.W., Mali H.S., Meena A. A comprehensive review on surface quality improvement methods for additively manufactured parts. Rapid Prototyping Journal. 2022;29(3):504—557. https://doi.org/10.1108/RPJ-06-2021-0133

31. Jin Y., Wan Y., Liu Z. Surface polish of PLA parts in FDM using dichloromethane vapour. In: The 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016) (MATEC Web of Conferences). 2016. Vol. 95. Р. 05001. https://doi.org/10.1051/matecconf/20179505001


Review

For citations:


Varfolomeev M.S., Petrov I.A. Consumable additive FDM models in the production of aluminum alloy castings. Izvestiya. Non-Ferrous Metallurgy. 2023;(4):5-14. https://doi.org/10.17073/0021-3438-2023-4-5-14

Views: 434


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)