Using the method of correlation of digital images for plotting stress–strain curves in true coordinates
https://doi.org/10.17073/0021-3438-2023-3-79-88
Abstract
This article describes the features of determining strain curves in true stress–true strain coordinates, using samples of circular cross section from Al–Cu–Mg–Zn aluminum alloy. The calculation and experimental methods of determining true stresses and strains were compared Calculation methods based on the condition of volume constancy may not reflect actual regularities of deformation at the stage of strain localization in the considered material. Nevertheless, the use of systems of digital image correlation (DIC) allows measurements of both the geometrical sizes of deformed sample and strain fields on its surface to be performed, including on the sample neck. It was demonstrated that the measurement error of the sample diameter by the coordinate field was 0.02 mm at the instance of destruction. In order to improve the measurement precision, an increase in the recording frequency in proportion to increase in strain rate was proposed, as well as measuring the surface coordinates from both sides of the sample. It is also possible to supplement the strain curves obtained by DIC optical systems with the measurements of true fracture stress, and the true fracture strain determined by calculations on the destructed sample. The presented methods of analysis of plastic flow by direct measurement of field displacements and strains allow actual regularities between true stresses and strains at the interval of irregular plastic strain to be established. This cannot be achieved by analytical conversion of conventional curve. The obtained hardening coefficients and strain curves can be used for simulation and design of machinery structures and parts.
About the Authors
A. D. MonakhovRussian Federation
Anton D. Monakhov – Engineer of the Laboratory of
Strength and Reliability of Aircraft Materials
17 Radio str., Moscow, 105005
M. M. Gulyaev
Russian Federation
Maksim M. Gulyaev – Head of the Department of the
Joint Stock Company (JSC)
59 Shcheglovskaya Zaseka str., Tula, 300004
N. E. Gladysheva
Russian Federation
Natalya E. Gladysheva – Head of the Sector
59 Shcheglovskaya Zaseka str., Tula, 300004
O. Yu. Kopteltseva
Russian Federation
Olga Yu. Kopteltseva – Leading Research Engineer
59 Shcheglovskaya Zaseka str., Tula, 300004
V. V. Avtaev
Russian Federation
Vitaliy V. Avtaev – Leading Engineer of the Laboratory of Strength and Reliability of Aircraft Materials
17 Radio str., Moscow, 105005
N. O. Yakovlev
Russian Federation
Nikolai O. Yakovlev – Cand. Sci. (Eng.), Head of the Laboratory of Strength and Reliability of Aircraft Materials
17 Radio str., Moscow, 105005
I. V. Gulina
Russian Federation
Irina V. Gulina – Deputy Head of the Laboratory of Strength and Reliability of Aircraft Materials
17 Radio str., Moscow, 105005
References
1. Oreshko E.I., Erasov V.S., Grinevich D.V., Shershak P.V. Review of criteria of durability of materials. Trudy VIAM. 2019;(9(81)):108—126. (In Russ.). https://doi.org/10.18577/2307-6046-2019-0-9-108-126
2. Yakovlev N.O., Grinevich D.V., Mazalov P.B. Mathematical simulation of the stress-strain state manifesting during compression of a lattice structure manufactured by means of selective laser melting. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Estestvennye nauki. 2018;(6(81)):113—127. (In Russ.). https://doi.org/10.18698/1812-3368-2018-6-113-127
3. Kablov E.N., Podzhivotov N.Yu., Lutsenko A.N. About need for creation of uniform information and analysis сenterof aviation materials of the Russian Federation. Problemy mashinostroeniya i avtomatizatsii. 2019;(3): 28—34. (In Russ.).
4. Grinevich A.V., Slavin A.V., Yakovlev N.O., Monakhov A.D., Gulina I.V. On problem of spalling fracture of high-strength steel under quasi-static tension. Deformatsiya i razrushenie materialov. 2021;(8):2—7. (In Russ.). https://doi.org/10.31044/1814-4632-2021-8-2-7
5. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI. 2017;(3):97—105. (In Russ.). https://doi.org/10.22204/2410-4639-2017-095-03-97-105
6. Dowling N. Mechanical behavior of materials: Engineering methods for deformation, fracture and fatigue. 4 ed. Essex: Pearson, 2013. 977 p.
7. Oreshko E.I., Erasov V.S., Krylov V.D. Construction of 3d stress-strain diagram for the analysis of mechanical behavior of the material tested at various loading rates. Aviatsionnye materialy i tekhnologii. 2018;(2(51)):59—66. (In Russ.). https://doi.org/10.18577/2071-9140-2018-0-2-59-66
8. Качанов Л.М. Основы механики разрушения. М.: Наука, 1974. 311 с.
9. Petrík A., Ároch R. Usage of true stress-strain curve for FE simulation and the influencing parameters. IOP Conference Series: Materials Science and Engineering. 2019;566:012025. http://dx.doi.org/10.1088/1757-899X/566/1/012025
10. Terhorst M., Ozhoga-Maslovskaja O., Trauth D., Mattfeld P., Klocke F. Finite element-based modeling of strain hardening in metal forming. Steel Research International. 2016;87(10):1323—1332. https://doi.org/10.1002/srin.201500375
11. Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М.: Наука, 1986. 561 c.
12. Osintsev A.V., Plotnikov A.S., Morozov E.M., Lubkova E.Yu. On the location of a neck formation during the tension of cylindrical specimens. Letters on Materials. 2017;7(3):260—265. https://doi.org/10.22226/2410-3535-2017-3-260-265
13. Junfu Chen, Zhiping Guan, Pinkui Ma, Zhigang Li, Xiangrui Meng. The improvement of stress correction in post-necking tension of cylindrical specimen. The Journal of Strain Analysis for Engineering Design. 2019;54(3): 209—222. http://dx.doi.org/10.1177/0309324719852875
14. Monakhov A.D., Yakovlev N.O., Avtaev V.V., Kotova E.A. Destructive methods for determining residual stresses (review). Trudy VIAM. 2021;(9(103)):95—104. (In Russ.). http://dx.doi.org/10.18577/2307-6046-2021-0-9-95-104
15. Huang L., Korhonen R.K., Turunen M.J., Finnilä M.A.J.Experimental mechanical strain measurement of tissues. Peer J. 2019;7:e6545. https://doi.org/10.7717%2Fpeerj.6545
16. Sutton M.A., Orteu J.-J., Schreier H.W. Image correlation for shape, motion and deformation measurements. Columbia, SC, USA: University of South Carolina, 2009. 322 p.
17. Yang L., Smith L. Measure strain distribution using digital image correlation (DIC) for tensile tests. Final Report. Auto/Steel Partnership. 2010. 26 p.
18. Junrui L., Guobiao Y., Thorsten S. A method of the direct measurement of the true stress—strain curve over a large strain range using multi-camera digital image correlation. Optics and Lasers in Engineering. 2018;(107):194—201. https://doi.org/10.1016/j.optlaseng.2018.03.029
19. Shchetinina N.D., Rudchenko A.S., Selivanov A.A. The approaches that are used for developed of optimal strain modes of aluminum-lithium alloys (review). Trudy VIAM. 2019;(8(90)):20—34. (In Russ.). https://doi.org/10.18577/2307-6046-2020-0-8-20-34
20. Poole W.J., Embury J.D., Lloyd D.J. Work hardening in aluminium alloys. In: Fundamentals of aluminium metallurgy. Ed. Roger Lumley. Woodhead Publishing Limited, 2011. P. 307—344. https://doi.org/10.1533/9780857090256.2.307
21. Den Uijl N.J., Carless L.J. Advanced metal-forming technologies for automotive applications. In: Advanced materials in Automotive Engineering. Ed. Jason Rowe. Woodhead Publishing Limited, 2012. P. 28—56. https://doi.org/10.1533/9780857095466.28
22. Faridmehr I., Osman M.H., Adnan A.B., Nejad A.F., Hodjati R., Azimi M. Correlation between engineering stress-strain and true stress-strain curve. American Journal of Civil Engineering and Architecture. 2014;2(1):53—59. http://dx.doi.org/10.12691/ajcea-2-1-6
Review
For citations:
Monakhov A.D., Gulyaev M.M., Gladysheva N.E., Kopteltseva O.Yu., Avtaev V.V., Yakovlev N.O., Gulina I.V. Using the method of correlation of digital images for plotting stress–strain curves in true coordinates. Izvestiya. Non-Ferrous Metallurgy. 2023;(3):79-88. https://doi.org/10.17073/0021-3438-2023-3-79-88