Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Using simulation to design tool for pressing of hollow profiles from aluminum alloys

https://doi.org/10.17073/0021-3438-2023-3-67-78

Abstract

In order to simulate the pressing of hollow profiles made from aluminum alloys, the previously developed design algorithms for the pressing tool and the QForm software were utilized. The objective of this study was to enhance the quality and decrease the design timeintervals for pressing tools used in the industrial production of aluminum alloy profiles. A novel design procedure for a combined tool, along with the technology of semi-continuous pressing with welded hollow profiles made from aluminum alloys, was proposed. This was achieved using the QForm software, which enables efficient calculations and adjustments of pressing parameters and tool geometry through a dialog interface. The developed algorithm and design procedures enable the drawing of hollow profiles, technological calculations of pressing parameters, selection of a suitable horizontal hydraulic press, matrix and splitter design, determination of strength parameters, assessment of equipment load, and preparation of working drawings for the pressing tool. In order to validate the effectiveness of the design procedure, it was applied to typical hollow profiles fabricated on a commercial scale. Two variations of the pressing tool design were examined. Simulation results obtained from QForm Extrusion software, specifically designed for pressing analysis, revealed that the initial design of the tool, with predetermined technological parameters and geometry of the splitter and matrix channels, resulted in uneven flow of profile elements and temperature distribution. However, by adjusting the tool parameters, it was possible to achieve a straight profile exit from the matrix and a uniform temperature distribution across its cross section. Industrial verification of the designed tool, utilizing a 33 MN hydraulic horizontal press for pressing profiles made from alloy 6063, demonstrated that significant modifications to the matrix and splitter were not necessary. By employing the proposed pressing tool design, batches of products were successfully manufactured in compliance with the required technical specifications, while reducing the design time intervals of the pressing tool by approximately 50 %.

About the Authors

S. B. Sidelnikov
Siberian Federal University
Russian Federation

Sergei B. Sidelnikov – Dr. Sci. (Eng.), Professor of the Department of Metal Forming (MF) of the School of Non-Ferrous Metals (SNFM)

95 Krasnoyarskiy Rabochiy prosp., Krasnoyarsk, 660025



S. S. Koloskov
Siberian Federal University
Russian Federation

Sergei S. Koloskov – Postgraduate Student of the Department of MF of SNFM

95 Krasnoyarskiy Rabochiy prosp., Krasnoyarsk, 660025



N. N. Dovzhenko
Siberian Federal University
Russian Federation

Nikolai N. Dovzhenko – Dr. Sci. (Eng.), Professor of the Department of Mechanical Engineering of the Polytechnic School

95 Krasnoyarskiy Rabochiy prosp., Krasnoyarsk, 660025



Yu. A. Gorbunov
Siberian Federal University
Russian Federation

Yurii A. Gorbunov – Dr. Sci. (Eng.), Professor of the Department of MF of SNFM

95 Krasnoyarskiy Rabochiy prosp., Krasnoyarsk, 660025



D. S. Voroshilov
Siberian Federal University
Russian Federation

Denis S. Voroshilov – Cand. Sci. (Eng.), Associate Professor, Head of the Department of MF of SNFM

95 Krasnoyarskiy Rabochiy prosp., Krasnoyarsk, 660025



References

1. Саха П.К. Технология прессования алюминия. М.: НП АПРАЛ, 2015. 352 с.

2. Баузер М., Зауер К., Зигерт Г. Прессование: Справ. руководство. Пер. с нем. по лицензии издательства «Aluminium Verlag Marketing & Kommunikation GmbH». М.: Алюсил МВ и Т, 2009. 922 с.

3. Логинов Ю.Н., Инатович Ю.В. Инструмент для прессования металлов: Учеб. пособие. 2-е изд., испр. и доп. Екатеринбург: Изд-во Уральского ун-та, 2014. 224 с.

4. Щерба В.Н. Прессование алюминиевых сплавов. М.: Интермет Инжиниринг, 2001. 768 с.

5. Qiang Li, Chris Harris, Mark R. Jolly. Finite element modelling simulation of transverse welding phenomenon in aluminium extrusion process. Materials & Design. 2003;24(7):493—496. https://doi.org/10.1016/S0261-3069(03)00123-7

6. Barbara Reggiani, Antonio Segatori, Lorenzo Donati, Luca Tomesani. Prediction of charge welds in hollowprofiles extrusion by FEM simulations and experimental validation. The International Journal of Advanced Manufacturing Technology. 2013;(69):1855—1872. https://doi.org/10.1007/s00170-013-5143-2

7. Longchang Tong, Christoph Becker, Pavel Hora. High efficiency in the simulation of complex extrusion processes using an advanced simulation method. Materials Today: Proceedings. 2015;2(10):4726—4731. https://doi.org/10.1016/j.matpr.2015.10.005

8. Kim K.J., Lee C.H., Yang D.Y. Investigation into the improvement of welding strength in three dimensional extrusion of tubes using porthole dies. Journal of Materials Processing Technology. 2002;(130):426—431. https://doi.org/10.1016/S0924-0136(02)00717-3

9. Xiaochen Lu, Junquan Yu, Jianguo Lin, Zhusheng Shi. Investigation of material flow behaviour and microstructure during differential velocity sideway extrusion. Procedia Manufacturing. 2020;(50):226—230. https://doi.org/10.1016/j.promfg.2020.08.042

10. Koloskov S.S., Sidelnikov S.B., Bersenev A.S., Lopatina E.S., Voroshilov D.S., Katryuk V.P. Technology study of aluminum alloys pipe pressing with use of computer simulation programs. Proizvodstvo Prokata. 2019;(12):23—28. (In Russ.). https://doi.org/10.31044/1814-4632-2019-0-12-23-28

11. Junquan Yu, Guoqun Zhao. Interfacial structure and bonding mechanism of weld seams during porthole die extrusion of aluminum alloy profiles. Materials Characterization. 2018;(138):56—66. https://doi.org/10.1016/j.matchar.2018.01.052

12. Crosio Michele, Hora David, Becker Christoph, Hora Pavel. Realistic representation and investigation of charge weld evolution during direct porthole die extrusion processes through FE-analysis. Procedia Manufacturing. 2018;(15):232—239. https://doi.org/10.1016/j.promfg.2018.07.214

13. Junquan Yu, Guoqun Zhao. Study on welding quality in the porthole die extrusion process of aluminum alloy profiles. Procedia Engineering. 2017;(207):401—406. https://doi.org/10.1016/j.proeng.2017.10.795

14. Junquan Yu, Guoqun Zhaoa, Weichao Cuib, Cunsheng Zhanga, Liang Chen. Microstructural evolution and mechanical properties of welding seams in aluminum alloy profiles extruded by a porthole die under different billet heating temperatures and extrusion speeds. Journal of Materials Processing Technology. 2017;(247):214—222. https://doi.org/10.1016/j.jmatprotec.2017.04.030

15. Bakker A.J.D., Katgerman L., Zwaag S.V.D. Analysis of the structure and resulting mechanical properties of aluminium extrusions containing a charge weld interface. Journal of Materials Processing Technology. 2016;(229): 9—21. https://doi.org/10.1016/j.jmatprotec.2015.09.013

16. Bingol Sedat, Bozaci Atilla. Experimental and numerical study on the strength of aluminum extrusion welding. Materials. 2015;8(7):4389—4399. https://doi.org/10.3390/ma8074389

17. Mahmoodkhani Y., Wells M., Parson N., Poole W.J. Numerical modelling of the material flow during extrusion of aluminium alloys and transverse weld formation. Journal of Material Processing Technology. 2014;(214):688—700. https://doi.org/10.1016/j.jmatprotec.2013.09.028

18. Stebunov S., Biba N., Lishny A., Jiao L. Practical implementation of numerical modeling to optimization of extrusion die design for production of complex shape profiles. Aluminium Extrusion and Finishing. 2013;(4):20—24. http://www.qform3d.co.uk/files_uk/2013_0002_0.pdf

19. Libura W., Rękas A. Numerical modelling in designing aluminium extrusion in: aluminium alloys: New trends in fabrication and applicationsed. Ed. by Zaki Ahmad. INTECH, 2012. P. 137—157. https://doi.org/10.5772/51239

20. Koloskov S., Sidelnikov S., Voroshilov D. Modeling process of semi-continuous extrusion of hollow 6063 aluminum alloy profiles using QForm extrusion. Solid State Phenomena. 2021;(316):288—294. https://doi.org/10.4028/www.scientific.net/SSP.316.288

21. Довженко Н.Н, Сидельников С.Б, Васина Г.И. Система автоматизированного проектирования технологии прессования металлов. Научное методическое обеспечение. Красноярск: ГАЦМиЗ, 2000. 194 с.

22. Aleshin V.P. Calculation of working bands of press dies. Tekhnologiya legkikh splavov. 1990;(1):30—33. (In Russ.).

23. Gun G.Ya., Averchenko A.F., Stebunov S.A. On the method of computer-aided design of press dies. Izvestiya. Ferrous Metallurgy. 1985;(7):92—95. (In Russ.).

24. Eidelnant S.B., Korpakov B.P., Maizlin Ya.L. Designing with the help of a computer matrices for pressing profiles. Tsvetnye Metally. 1982;(3):81—82. (In Russ.).

25. Stepanskiy L.G. Estimated estimates of press matrix calibrations. Kuznechno-shtampovochnoe proizvodstvo. 1983;(5):25—27. (In Russ.).

26. QForm-Extrusion (электронный ресурс). Моделирование прессования профилей. URL: https://qform3d.ru/products/extrusion (дата обращения: 20.04.2023).

27. Knyaz’kin I.S., Dyuzhev A.M., Vlasov A.V., Gladkov Yu.A., Lishniy A.I. Technique for computer-aided design of matrix tooling for pressing aluminum alloys. Science and Education. MSTU im. N.E. Bauman (Electron. Magazine). 2015;(8):1—13. (In Russ.).

28. Дюжев А.М., Князькин И.С., Лишний А.И., Соловьев Д.А., Стебунов Д.А. Программа для автоматизированного поэлементного параметрического проектирования матричной оснастки для прессования профилей QForm Extrusion Die Designer (QExDD): Св-во 2015613466 (РФ). 2015.

29. Леванов А.Н., Колмогоров В.Л., Буркин С.П., Картак Б.Р., Ашпур Ю.В., Спасский Ю.И. Контактное трение в процессах обработки металлов давлением. М.: Металлургия. 1975. 352 с.

30. Laptev A.M., Tkachenko Ya.Yu., Zhabin V.I. Construction of a diagram for determining the coefficient of friction in the Levanov formula using the ring upset method. Obrabotka materialov davleniem. 2011;3(28):129—132. (In Russ.).


Review

For citations:


Sidelnikov S.B., Koloskov S.S., Dovzhenko N.N., Gorbunov Yu.A., Voroshilov D.S. Using simulation to design tool for pressing of hollow profiles from aluminum alloys. Izvestiya. Non-Ferrous Metallurgy. 2023;(3):67-78. https://doi.org/10.17073/0021-3438-2023-3-67-78

Views: 394


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)