Silicon electrodeposition from the KF-KCl-K2SiF6 and KF-KCl-KI-K2SiF6 melts
https://doi.org/10.17073/0021-3438-2023-3-17-26
Abstract
Silicon and silicon-based materials find extensive applications in metallurgy, microelectronics, and other emerging industries. The field of use of synthesized silicon varies based on its morphology and purity. This study employs voltammetry, galvanostatic electrolysis, and scanning electron microscopy to examine the impact of KI surfactant (in mol %) to 66.5KF–33.3KCl–0.23K2SiF6 melt at 750°C on the electrowinning kinetics of silicon ions and the morphology of silicon deposits formed on a glassy carbon electrode. The findings demonstrate that the addition of potassium iodide to the KF–KCl–K2SiF6 melt at a concentration of 2 mol % induces changes in interfacial tension at the boundary between the glassy carbon, melt, and atmosphere. Consequently, the wetting of the glassy carbon with the melt decreases, leading to a reduction in the actual working surface area and, consequently, a decrease in cathode current while maintaining current density. Taking into account this effect and employing an algebraic estimation of the influence of the melt meniscus shape, it is postulated that the addition of KI does not significantly affect the kinetics of the cathode process. Nevertheless, the impact of KI addition on the morphology of electrodeposited silicon is mentioned. During the electrolysis of the KF–KCl–K2SiF6 melt, fibrous silicon deposits with arbitrary shapes are formed on the glassy carbon electrode, whereas the addition of 2 and 4 mol % of potassium iodide to the melt leads to the agglomeration and smoothing of silicon deposits under the same electrolysis conditions (cathode current density: 0.02 A/cm2, electrolysis duration: 2 h). The obtained results indicate the potential to manipulate the morphology of electrodeposited silicon for specific applications in various fields.
About the Authors
S. I. ZhukRussian Federation
Sergey I. Zhuk – Junior Researcher of the Laboratory of Electrode Processes, Institute of High-Temperature Electrochemistry of Ural Branch of the Russian Academy of Sciences; Junior Researcher of the Laboratory of
Electrochemical Devices and Materials
20 Akademicheskaya str., Ekaterinburg, 620137;
19 Mira str., Ekaterinburg, 620002
L. M. Minchenko
Russian Federation
Lyudmila M. Minchenko – Cand. Sci. (Chem.), Engineer of the Laboratory of Electrode Processes
20 Akademicheskaya str., Ekaterinburg, 620137
A. V. Suzdaltsev
Russian Federation
Andrey V. Suzdaltsev – Dr. Sci. (Chem.), Leading Researcher of the Laboratory of Electrode Processes; Head of the Laboratory of Electrochemical Devices and Materials
20 Akademicheskaya str., Ekaterinburg, 620137;
19 Mira str., Ekaterinburg, 620002
A. V. Isakov
Russian Federation
Andrey V. Isakov – Cand. Sci. (Chem.), Head of the Laboratory of Electrocrystallization and High-Temperature Electroplating
20 Akademicheskaya str., Ekaterinburg, 620137
Yu. P. Zaikov
Russian Federation
Yuriy P. Zaikov – Dr. Sci. (Chem.), Prof., Scientific Supervisor; Head of the Department of Technology of Electrochemical Production
20 Akademicheskaya str., Ekaterinburg, 620137;
19 Mira str., Ekaterinburg, 620002
References
1. Nemchinovа N.V., Buzikova T.A. Study of the phaseand-chemical composition of silicon production furnace slags. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):31—39. (In Russ.). https://doi.org/10.17073/0021-3438-2017-1-31-39
2. Timofeev P.A., Timofeev A.N. Thermodynamic assessment of capability for deposition of silicon borides from their halogenides. Powder Metallurgy аnd Functional Coatings. 2017;(1): 58—63. (In Russ.). https://doi.org/10.17073/1997-308X-2017-1-58-63
3. Gevel T., Zhuk S., Leonova N., Leonova A., Trofimov A., Suzdaltsev A., Zaikov Yu. Electrochemical synthesis of nano-sized silicon from KCl—K2SiF6 melts for powerful lithium-ion batteries. Applied Sciences. 2021;11(22): 10927. https://doi.org/10.3390/app112210927
4. Wang F., Li P., Li W., Wang D. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery. ACS Nano. 2022;16:7689—7700. https://doi.org/10.1021/acsnano.1c11393
5. Suzdaltsev A.V. Silicon electrodeposition for microelectronics and distributed energy: a mini-review. Electrochem. 2022;3(4):760—768. https://doi.org/10.3390/electrochem3040050
6. Dong Y., Slade T., Stolt M.J., Li L., Girard S.N., Mai L., Jin S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angewandte Chemie. 2017;129:14645—14649. https://doi.org/10.1002/ange.201707064
7. Zou X., Ji L., Yang X., Lim T., Yu E.T., Bard A.J. Electrochemical formation of a p-n junction on thin film silicon deposited in molten salt. Journal of American Chemical Society. 2017;139:16060—16063. https://doi.org/10.1021/jacs.7b09090
8. Zaykov Y.P., Zhuk S.I., Isakov A.V., Grishenkova O.V., Isaev V.A. Electrochemical nucleation and growth ofsilicon in the KF—KCl—K2SiF6 melt. Journal of Solid State Electrochemistry. 2015;19:1341—1345. https://doi.org/10.1007/s10008-014-2729-z
9. Zhuk S.I., Gevel T.A., Zaikov Yu.P. Effect of the substrate material on kinetics and mechanism of electrodeposition from the KCl—KF—K2SiF6 melt. Rasplavy. 2021;(4): 354—364. (In Russ.). https://doi.org/10.31857/S0235010621040101
10. Yasuda K., Maeda K., Hagiwara R., Homma T., Nohira T. Silicon electrodeposition in a water-soluble KF—KCl molten salt: Utilization of SiCl4 as Si source. Journal of the Electrochemical Society. 2017;164:D67—D71. https://doi.org/10.1149/2.0641702jes
11. Padamata S.K., Saevarsdottir G. Silicon electrowinning by molten salts electrolysis. Fronties in Chemistry. 2023;11:1133990. https://doi.org/10.3389/fchem.2023.1133990
12. Parasotchenko Yu.A., Pavlenko O.B., Suzdaltsev A.V., Zaikov Yu.P. Electrochemical nucleation of silicon in the low-temperature LiCl—KCl—CsCl—K2SiF6 melt. Journal of the Electrochemical Society. 2023;170(2):022505. https://doi.org/10.1149/1945-7111/acbabf
13. Gevel T., Zhuk S., Suzdaltsev A.V., Zaikov Yu.P. Study into the possibility of silicon electrodeposition from a low-fluoride KCl—K2SiF6 melt. Ionics. 2022;28:3537—3545. https://doi.org/10.1007/s11581-022-04573-9
14. Pavlenko O.B., Ustinova Yu.A., Zhuk S.I., Suzdaltsev A.V., Zaikov Yu.P. Silicon electrodeposition from low-melting LiCl—KCl—CsCl melts. Russian Metallurgy (Metally). 2022;(8):818—824. https://doi.org/10.1134/S0036029522080109
15. Savchenkov S.A., Bazhin V.Y., Brichkin V.N., Kosov Y.I., Ugolkov V.L. Production features of magnesiumneodymium master allot synthesis. Metallurgist. 2019;63(3-4): 394—402. https://doi.org/10.1007/s11015-019-00835-6
16. Morachevskii A.G. Physicochemical studies of utilization of lead batteries. Russian Journal of Applied Chemistry. 2014;87(3):241—257. https://doi.org/10.1134/S107042721403001X
17. Shurov N.I., Khramov A.P., Zaikov Yu.P., Kovrov V.A., Suzdaltsev A.V. Reduction mechanism of oxides in calcium chloride melts. Russian Journal of Non-Ferrous Metals. 2015;56:267—271. https://doi.org/10.3103/S1067821215030207
18. Yasinsky A.S., Polyakov P.V., Klyuchantsev A.B. Anode gas dynamics in high-temperature cryolite melt-alumina slurry. Izvestiya. Non-Ferrous Metallurgy. 2017;(1):13—18. (In Russ.). https://doi.org/10.17073/0021-3438-2017-1-13-18
19. Sizyakov V.M., Bazhin V.Yu., Vlasov A.A., Feshchenko R.Yu., Khrapkova A.N. On interdependence of alumina charge with cryolite-alumina melt. Izvestiya. Non-Ferrous Metallurgy. 2014;(3):24—28. (In Russ.). https://doi.org/10.17073/0021-3438-2014-3-24-28
20. Zaikov Yu., Batukhtin V., Shurov N., Suzdaltsev A. High-temperature electrochemistry of calcium. Electrochemical Materials & Technologies. 2022;1(1):20221007. https://doi.org/10.15726/elmattech.2022.1.007
21. Trofimova T.S., Darintseva A.B., Ostanina T.N., Rudoi V.M., Il’ina I.E. Effect of the structure and morphology of Ni-based porous deposits on their electrocatalytic activity towards hydrogen evolution reaction. Powder Metallurgy аnd Functional Coatings. 2021;15(4):57—67. (In Russ.). https://doi.org/10.17073/1997-308X-2021-4-57-67
22. Lebedev V.A., Polyakov V.V. Electrode processes in the production of microdispersed titanium powder by volumetric electrolytic reduction of its ions with sodium dissolved in the BaCl2—CaCl2—NaCl melt in the absence of titanium halides in the initial melt. Powder Metallurgy аnd Functional Coatings. 2022;16(4):4—14. (In Russ.). https://doi.org/10.17073/1997-308X-2022-4-14
23. Nikitin V.S., Ostanina T.N., Kumkov S.I., Rudoy V.M., Ostanin N.I. Determination of the growth time period of loose zinc deposit using interval analysis methods. Powder Metallurgy аnd Functional Coatings. 2020;(1):11—21. (In Russ.). https://doi.org/10.17073/1997-308X-2020-11-21
24. Laptev M.V., Khudorozhkova A.O., Isakov A.V., Grishenkova O.V., Zhuk S.I., Zaikov Y.P. Electrodeposition of aluminum-doped thin silicon films from a KF—KCl—KI—K2SiF6—AlF3 melt. Journal of Serbian Chemical Society. 2021;86):1075—1087. https://doi.org/10.2298/JSC200917065L
25. Abdurakhimova R.K., Laptev M.V., Leonova N.M., Leonova A.M., Schmygalev A.S., Suzdaltsev A.V. Electroreduction of silicon from the NaI—KI—K2SiF6 melt for lithium-ion power sources. Chimica Techno Acta. 2022;9(4):20229424. https://doi.org/10.15826/chimtech.2022.9.4.24
26. Isakov A., Laptev M., Khudorozhkova A., Grishenkova O., Zaikov Y., Khvostov S., Kinev E., Rychkov V. Neutron transmutation doping of thin silicon films electrodeposited from the KF—KCl—KI—K2SiF6 melt. Journal of the Electrochemical Society. 2020;167(8):082515. https://doi.org/10.1149/1945-7111/ab933c
27. Filatov A.A., Nikolaev A.Y., Suzdaltsev A.V., Zaikov Y.P. Extraction of zirconium from its oxide during the electrolysis of KF—AlF3—Al2O3—ZrO2 melts. Russian Journal of Non-Ferrous Metals. 2022;63(4):379—384. https://doi.org/10.3103/S106782122204006X
Review
For citations:
Zhuk S.I., Minchenko L.M., Suzdaltsev A.V., Isakov A.V., Zaikov Yu.P. Silicon electrodeposition from the KF-KCl-K2SiF6 and KF-KCl-KI-K2SiF6 melts. Izvestiya. Non-Ferrous Metallurgy. 2023;(3):17-26. https://doi.org/10.17073/0021-3438-2023-3-17-26