Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Titanium alloy fatigue strength and eigenfrequency stability

https://doi.org/10.17073/0021-3438-2023-2-74-82

Abstract

We conducted a study on fatigue in flat samples of the VT3-1 titanium alloy using “soft” cyclic beam bending tests. For this purpose, we developed an innovative electromagnetic test bench. The test bench's electromechanical system induces mechanical vibrations at a frequency that matches the eigenfrequency of the sample, ensuring that the cyclic load frequency remains constant. The electromagnetic force bends the sample while the elastic force unbends it, producing a quasi-sinusoidal cyclic load. Through our investigation, we determined the impact of this cyclic loading on both cyclic strength and durability. Our findings indicate that the VT3-1 titanium alloy possesses high resistance to fatigue and an endurance limit. Furthermore, we observed a low variability of the experimental fatigue resistance in relation to the approximating fatigue curve, suggesting the alloy has high structural stability. This finding indicates that the VT3-1 titanium alloy possesses high structural stability. To assess eigenfrequency stability, we subjected the alloy samples to cyclic tests, interrupting them at a reference number of 50 million cycles to evaluate changes in eigenfrequencies and stability under loads close to the fatigue limit. The results showed that the titanium alloy has a high level of eigenfrequency stability. Interruptions in cyclic tests resulted in jump-like increases in eigenfrequencies, which was not observed in continuous tests. Nevertheless, the total eigenfrequency deviations from the initial value at the end of the tests were similar in both cases

About the Authors

D. I. Shetulov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Dmitry I. Shetulov – Dr. Sci. (Eng.), Professor, Leading Researcher of the Department of Science, Nizhny Novgorod State University of Architecture and Civil Engineering (NGASU).

65 Ilyinskaya Str., Nizhny Novgorod 603950



V. V. Mylnikov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Vladimir V. Mylnikov – Cand. Sci. (Eng.), Associate Professor of the Department of Construction Technologies; Leading Researcher of the Department of Scientific Research, Innovation and Project Work; Head of the Laboratory of Strength and Plasticity of Functional Materials, NNGASU.

65 Ilyinskaya Str., Nizhny Novgorod 603950



E. A. Dmitriev
Komsomolsk-na-Amure State University
Russian Federation

Eduard A. Dmitriev – Dr. Sci. (Eng.), Rector of Komsomolskna-Amure State University.

27 Lenina Prosp., Komsomolsk-na-Amure 681013



References

1. Terent’ev V.F., Korableva S.A. Fatigue of metals. Mosсow: Nauka, 2015. 479 р. (In Russ).

2. Mughrabi H., Christ H.-J. Cyclic deformation and fatigue of selected ferritic and austenitic steels; specific aspects. ISIJ International. 1997;37(12):1154—1169.

3. Gromov V.E., Ivanov Yu.F., Vorobiev S.V., Konovalov S.V. Fatigue of steels modified by high intensity electron beams. Cambridge, 2015. 272 р.

4. Shkol’nik L.M. Fatigue testing methodology: Guide. Mosсow: Metallurgiya, 1978. 304 р. (In Russ).

5. Gadolina I.V., Makhutov N.A., Erpalov A.V. Varied approaches to loading assessment in fatigue studies. International Journal of Fatigue. 2021;144:106035. https://doi.org/10.1016/j.ijfatigue.2020.106035

6. Suresh S. Fatigue of metals. Cambridge University Press, 2006. 701 p.

7. Myl’nikov V.V., Kondrashkin O.B., Shetulov D.I., Chernyshov E.A., Pronin A.I. Fatigue resistance changes of structural steels at different load spectra. Steel in Translation. 2019;49(10):678—682. https://doi.org/10.3103/S0967091219100097

8. Troshchenko V.T., Khamaza L.A., Pokrovsky V.V. Cyclic deformation and fatigue of metals (Ed. M. Bily). Amsterdam: Elsevier, 1993. 500 p.

9. Golovin S.A., Tikhonova I.V. Temperature dependence of internal friction and properties of deformed lowcarbon iron alloys. Deformatsiya i razrushenie materialov. 2013;(7):16—21. (In Russ.).

10. Golovin S.A., Petrushina A.G. Temperature spectrum of internal friction of cast iron. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya. 2009; (9):51—54. (In Russ.).

11. McClaflin D., Fatemi A. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects. International Journal of Fatigue. 2004;26(7):773—784. https://doi.org/10.1016/j.ijfatigue.2003.10.019

12. Golovin I.S., Bychkov A.S., Mikhailovskaya A.V., Dobatkin S.V. Contributions of phase and structural transformations in multicomponent Al—Mg alloys to the linear and nonlinear mechanisms of anelasticity. The Physics of Metals and Metallography. 2014;115(2):192—201. https://doi.org/10.1134/S0031918X14020082

13. Kardashev B.K., Sapozhnikov K.V., Betekhtin V.I., Kadomtsev A.G., Narykova M.V. Internal friction, young’s modulus, and electrical resistivity of submicrocrystalline titanium. Physics of the Solid State. 2017;59(12):2381—2386. https://doi.org/10.1134/S1063783417120204

14. Blanter M.S., Golovin I.S., Neuhäuser H., Sinning H.R. Internal friction in metallic materials. Springer Series in Materials Science. 2007;90:1—535. https://doi.org/10.1007/978-3-540-68758-0

15. Stolyarov V.V. Inelasticity of ultrafine-grained metals. Izvestiya vysshikh uchebnykh zavedenii. Chernaya metallurgiya. 2010;(11):51—54. (In Russ.).

16. Romaniv O.N., Laz’ko L.P., Krys’kiv A.S. Relationship of internal friction to the fatigue life of patented steel wire. Materials Science. 1984;19:522—527. https://doi.org/10.1007/BF00722120

17. Myl’nikov V.V., Shetulov D.I. Fatigue testing facility. Patent 2781466 (RF). 2022. (In Russ.).

18. Myl’nikov V.V., Shetulov D.I., Chernyshov E.A. Variation in factors of fatigue resistance for some pure metals as a function of the frequency of loading cycles. Russian Journal of Non-Ferrous Metals. 2010;51(3):237—242. https://doi.org/10.3103/S1067821210030089

19. Mylnikov V.V., Shetulov D.I., Chernyshov E.A. Investigation into the surface damage of pure metals allowing for the cyclic loading frequency. Russian Journal of NonFerrous Metals. 2013;54(3):229—233. https://doi.org/10.3103/S1067821213030103

20. Shetulov D.I On the estimation of the metals endurance fatigue by the damage of the surface anomalous layers. Soviet Materials Science. 1984;(6):117—120.

21. Stephens R.I., Fatemi A., Stephens R., Fuchs H.O. Metal fatigue in engineering. New York: John Wiley & Sons, 2000. 472 р.

22. ASM Metals: HandBook. Vol. 19. Fatigue and fracture. ASM International, 2002. 2592 p.

23. Schijve J. Fatigue of structures and materials. Springer Science & Business Media, 2001.

24. Campbell F.C. Fatigue and fracture: Understanding the basics. ASM International, 2012. 525 p.

25. Lee Y-L., Barkey M.E., Kang H-T. Metal fatigue analysis handbook: Practical problem-solving techniques for computer-aided engineering. Butterworth-Heinemann: Elsevier Inc., 2011. 632 p.


Review

For citations:


Shetulov D.I., Mylnikov V.V., Dmitriev E.A. Titanium alloy fatigue strength and eigenfrequency stability. Izvestiya. Non-Ferrous Metallurgy. 2023;(2):74-82. https://doi.org/10.17073/0021-3438-2023-2-74-82

Views: 364


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)