Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and mechanical properties of welded joints from alloy based on VTI-4 orthorhombic titanium aluminide produced by pulse laser welding

https://doi.org/10.17073/0021-3438-2023-2-57-73

Abstract

Ti2AlNb-based alloys are promising materials for operation at high temperatures in aerospace industry. Meanwhile, the existing difficulties of weldability restrict opportunities of their application. This work is devoted to studies of welded joints from Ti2AlNb-based VTI-4 alloy, obtained using pulsed laser welding (PLW). The optimum PLW modes have been determined providing uniform faultless joint. The features of formation of external defects, internal pores, cracks and non-uniform penetration depth were detected depending on welding conditions. The main PLW parameters influencing on formation of welded joint are voltage and duration of laser pulse. It was demonstrated that at insufficient medium and high peak powers sawtooth seam roots and internal pores can be formed. However, at higher rates of energy input thermal hydraulic processes in welding bathe are violated, accompanied by metal splashing (spattering), heterogeneity of pulse imposition is observed. This leads to formation of cracks, higher porosity, heterogeneity of melting zone, and as a consequence, poor mechanical properties. Microstructure analysis of the welded joints obtained by means of PLW has demonstrated that the melting area is comprised of long dendritic grains of β phase, and the heat affected zone from two regions of β + α2 phases and β + α2 + O phases. Herewith, the achieved joint strength equals to ~80 % of the base metal produced using the optimum PLW mode.

About the Authors

S. V. Naumov
Belgorod State University
Russian Federation

Stanislav V. Naumov – Cand. Sci. (Eng.), Assistant Professor of the Department of Materials Science and Nanotechnology (MSN); Senior Research Scientist of the Laboratory of Bulk Nanostructured Materials (BNM), BSU.

85 Pobeda Str., Belgorod, 308015



D. O. Panov
Belgorod State University
Russian Federation

Dmitrii O. Panov – Cand. Sci. (Eng.), Assistant Professor of the Department of MSN; Senior Research Scientist of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



R. S. Chernichenko
Belgorod State University
Russian Federation

Ruslan S. Chernichenko – Engineer of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



V. S. Sokolovsky
Belgorod State University
Russian Federation

Vitaly S. Sokolovsky – Cand. Sci. (Eng.), Research Scientist of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



E. I. Volokitina
Belgorod State University
Russian Federation

Elena I. Volokitina – Engineer of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



N. D. Stepanov
Belgorod State University
Russian Federation

Nikita D. Stepanov – Cand. Sci. (Eng.), Assistant Professor of the Department of MSN; Senior Research Scientist of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



S. V. Zherebtsov
Belgorod State University
Russian Federation

Sergey V. Zherebtsov – Dr. Sci. (Eng.), Professor of the Department of MSN, Chief Research Scientist of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



Е. B. Alekseev
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (VIAM)
Russian Federation

Evgeny B. Alekseev – Cand. Sci. (Eng.), Head of Sector, All-Russia Institute of Aviation Materials «VIAM».

17 Radio Str., Moscow 105005



N. A. Nochovnaya
Federal State Unitary Enterprise “All-Russian Scientific Research Institute of Aviation Materials” (VIAM)
Russian Federation

Nadezhda A. Nochovnaya – Dr. Sci. (Eng.), Head of Laboratory, All-Russia Institute of Aviation Materials «VIAM».

17 Radio Str., Moscow 105005



G. A. Salishchev
Belgorod State University
Russian Federation

Gennady A. Salishchev – Dr. Sci. (Eng.), Professor of the Department of MSN, Head of the Laboratory of BNM, BSU.

85 Pobeda Str., Belgorod, 308015



References

1. Banerjee D., Gogia A.K., Nandi T.K., Joshi V.A. A new ordered orthorhombic phase in a Ti3AlNb alloy. Acta Metallurgica. 1988;36(4):871—882. https://doi.org/10.1016/0001-6160(88)90141-1

2. Banerjee D. The intermetallic Ti2AlNb. Progress in Materials Science. 1997;42(1-4):135—158. https://doi.org/10.1016/S0079-6425(97)00012-1

3. Wang L., Sun D., Li H., Gu X., Shen C. Microstructures and mechanical properties of a laser-welded joint of Ti3Al—Nb alloy using pure Nb filler metal. Metals (Basel). 2018;8(10):785. https://doi.org/10.3390/met8100785

4. Shagiev M.R., Galeyev R.M., Valiakhmetov O.R. Ti2AlNb-Based intermetallic alloys and composites. Materials physics and mechanics. 2017;33(1):12—18. https://doi.org/10.18720/MPM.3312017_2

5. Pollock T.M., Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. Journal of Propulsion and Power. 2006;22(2):361—374. https://doi.org/10.2514/1.18239

6. Liu X., Wu S., Ji Y., Shao L., Zhao H., Wan X. Ultrasonic frequency pulse tungsten inert gas welding of Ti2AlNbbased alloy. Xiyou Jinshu/Chinese Journal of Rare Metals. 2014;38(4):541—547. https://doi.org/10.13373/j.cnki.cjrm.2014.04.001

7. Lu B., Yin J., Wang Y., Yang R. Gas tungsten arc welding of Ti2AlNb based alloy sheet. In: Proc. 12th World Conf. Titan (Ti 2011). (China, Beijing, 19—24 June 2011). 2012. Vol. 1. Р. 816—818.

8. Shao L., Cui E. Joining of Ti—22Al—25Nb Alloy using different welding methods. Materials China. 2019;38(3):286—290. https://doi.org/10.7502/j.issn.1674-3962.2019.03.11

9. Mohandas T., Banerjee D., Mahajan Y.R., Kutumba Rao V.V. Studies on fusion zone fracture behaviour of electron beam welds of an α + β-titanium alloy. Journal of Materials Science. 1996;31(14):3769—3775. https://doi.org/10.1007/BF00352792

10. Li D., Hu S., Shen J., Zhang H., Bu X. Microstructure and mechanical properties of laser-welded joints of Ti—22Al—25Nb/TA15 dissimilar titanium alloys. Journal of Materials Engineering and Performance. 2016;25(5):1880—1888. https://doi.org/10.1007/s11665-016-2025-4

11. Li Y.-J., Wu Ai-P., Li Q., Zhao Y., Zhu R.-C., Wang G.-Q. Effects of welding parameters on weld shape and residual stresses in electron beam welded Ti2AlNb alloy joints. Transactions of Nonferrous Metals Society of China. 2019;29(1):67—76. https://doi.org/10.1016/S1003-6326(18)64916-7

12. Skupov A.A., Sviridov A.V., Khodakova E.A., AfanasevKhodykin A.N. Creation of joints from intermetallic titanium alloys (review). Trudy VIAM. 2021;7:31—38. (In Russ.). https://doi.org/10.18577/2307-6046-2021-0-7-31-38

13. Zhang K., Lei Z., Chen Y., Yang K., Bao Y. Heat treatment of laser-additive welded Ti2AlNb joints: Microstructure and tensile properties. Materials Science and Engineering: A. 2019;744:436—444. https://doi.org/10.1016/j.msea.2018.12.058

14. Auwal S.T., Ramesh S., Yusof F., Manladan S.M. A review on laser beam welding of titanium alloys. International Journal of Advanced Manufacturing Technology. 2018;97(1-4):1071—1098. https://doi.org/10.1007/s00170-018-2030-x

15. Chludzinski M., dos Santos R.E., Churiaque C., OrtegaIguña M., Sánchez-Amaya J.M. Pulsed laser welding applied to metallic Materials — A Material Approach. Metals. 2021;21(4):640. https://doi.org/10.3390/met11040640

16. Zhang P., Jia Z., Yu Z., Shi H., Li S., Wu D., Yan H., Ye X., Chen J., Wang F., Tian Y. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys. Optics & Laser Technology. 2021;140:107094. https://doi.org/10.1016/j.optlastec.2021.107094

17. Gaikwad A., Deore H., Kotwal V., Pawar A., Valli A. Review on laser welding of titanium alloy. In: Proc. International Conference on Ideas, Impact and Innovation in Mechanical Engineering (ICIIIME 2017) (India, Rajasthan, 1—2 June 2017). 2017. Vol. 5(6). Р. 789—795.

18. Li Y.-J., Wu A.-P., Li Q., Zhao Y., Zhu R.-C., Wang G.-Q. Mechanism of reheat cracking in electron beam welded Ti2AlNb alloys. Transactions of Nonferrous Metals Society of China. 2019;29(9):1873—1881. https://doi.org/10.1016/S1003-6326(19)65095-8

19. Panov D.O., Naumov S.V., Sokolovsky V.S., Volokitina E.I., Kashaev N., Ventzke V., DInse R., Riekehr S., Povolyaeva E.A., Alekseev E.B., Nochovnaya N.A., Zherebtsov S.V., Salishchev G.A. Cracking of Ti2AlNb-based alloy after laser beam welding. IOP Conference Series: Materials Science and Engineering. 2021;1014:012035. https://doi.org/10.1088/1757-899X/1014/1/012035

20. Xu J., Rong Y., Huang Y., Wang P., Wang C. Keyholeinduced porosity formation during laser welding. Journal of Materials Processing Technology. 2018;252:720—727. https://doi.org/10.1016/j.jmatprotec.2017.10.038

21. Zhou J., Tsai H.L. Porosity formation and prevention in pulsed laser welding. ASME Journal of Heat and Mass Transfer. 2007;129(8):1014—1024. https://doi.org/10.1115/1.2724846

22. Bruyere V., Touvrey C., Namy P. A phase field approach to model laser power control in spot laser welding. In: Proc. 2014 COMSOL Conf. 2014. Р. 1—4. URL: https://www.comsol.com/paper/a-phase-field-approach-tomodel-laser-power-control-in-spot-laser-welding-18505 (accessed: 01.09.2022).

23. Li H. Analysis of porosity in welding of titanium alloy. In: Proc. 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME) (China, Suzhou, 1—3 May 2020). 2020. Р. 486—489. https://doi.org/10.1109/ICEDME50972.2020.00116

24. Li H. The causes and control of porosity in titanium alloy welding. In: Proc. 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME) (China, Suzhou, 1—3 May 2020). 2020. Р. 490—493. https://doi.org/10.1109/ICEDME50972.2020.00117

25. Huang J.L., Warnken N., Gebelin J.-C., Strangwood M., Reed R.C. On the mechanism of porosity formation during welding of titanium alloys. Acta Materialia. 2012;60(6-7):3215—3225. https://doi.org/10.1016/j.actamat.2012.02.035

26. Chen W., Li J.W., Xu L., Lu B. Development of Ti2AlNb alloys: Opportunities and challenges. Advanced Materials and Processes. 2014;172(5):23—27.

27. Zhan X., Yan T., Gao Q., Zhu Z., Bu H., Wang Z. The porosity formation mechanism in the laser welded joint of TA15 titanium alloy. Materials Research Express. 2019;6(7):076558. https://doi.org/10.1088/2053-1591/ab1612

28. Torkamany M.J., Malek Ghaini F., Papan E., Dadras S. Process optimization in titanium welding with pulsed Nd:YAG laser. Science of Advanced Materials. 2012;4(3-4): 489—496. https://doi.org/10.1166/sam.2012.1307

29. Baranov D.A., Parkin A.A., Zhatkin S.S. Features of formation of the welded seam of heat-resistant KhN45VMTYuBR alloy depending on the modes of laser welding. Izvestiya Samarskogo nauchnogo tsentra RAN. 2018;2:170—176. (In Russ.).

30. Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. Технологические процессы лазерной обработки. Москва: МГТУ им. Н.Э. Баумана, 2008. 664 с.

31. Baeslack W.A., Cieslak M.J., Headley T.J. Structure, properties and fracture of pulsed Nd:YAG laser welded Ti—14.8wt%Al—21.3wt%Nb titanium aluminide. Scripta Metallurgica. 1988;22(7):1155—1160. https://doi.org/10.1016/S0036-9748(88)80122-4

32. Panov D., Naumov S., Stepanov N., Sokolovsky V., Volokitina E., Kashaev N., Ventzke V., Dinse R., Riekehr S., Povolyaeva E., Nochovnaya N., Alekseev E., Zherebtsov S., Salishchev G. Effect of pre-heating and post-weld heat treatment on structure and mechanical properties of laser beam-welded Ti2AlNb-based joints. Intermetallics. 2022;143:107466. https://doi.org/10.1016/j.intermet.2022.107466

33. Chen X., Xie F. Q., Ma T. J., Li W. Y., Wu X. Q. Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy. Materials & Design. 2016;94:45—53. https://doi.org/10.1016/j.matdes.2016.01.017

34. Xiong L., Mi G., Wang C. Microstructure and mechanical properties of laser-welded joints of Ti—22Al-25Nb/ Ti—6Al—4V dissimilar titanium alloys. Journal of Laser Applications. 2018;30(3):032412. https://doi.org/10.2351/1.5040610

35. Chen W., Chen Z.Y., Wu C.C., Li J.W., Tang Z.Y., Wang Q.J. The effect of annealing on microstructure and tensile properties of Ti—22Al—25Nb electron beam weld joint. Intermetallics. 2016;75:8—14. https://doi.org/10.1016/j.intermet.2016.02.006

36. Mehdi B., Badji R., Ji V., Allili B., Bradai D., DeschauxBeaume F., Soulié F. Microstructure and residual stresses in Ti—6Al—4V alloy pulsed and unpulsed TIG welds. Journal of Materials Processing Technology. 2016;231:441— 448. https://doi.org/10.1016/j.jmatprotec.2016.01.018

37. Wu J., Xu L., Lu Z., Cui Y., Yang R. Preparation of powder metallurgy Ti—22Al—24Nb—0.5Mo alloys and electron beam welding. Jinshu Xuebao/ Acta Metallurgica Sinica. 2016;52:1070—1078. https://doi.org/10.11900/0412.1961.2016.00019

38. Huang J., Turner R., Gebelin J.C., Warnken N., Strangwood M., Reed R.C. The effect of hydrogen on porosity formation during electron beam welding of titanium alloys. In: ASM Proc International Conference on Trends in Welding Rearch (USA, Chicago, 4—8 June 2012). 2013. Р. 868—875.


Review

For citations:


Naumov S.V., Panov D.O., Chernichenko R.S., Sokolovsky V.S., Volokitina E.I., Stepanov N.D., Zherebtsov S.V., Alekseev Е.B., Nochovnaya N.A., Salishchev G.A. Structure and mechanical properties of welded joints from alloy based on VTI-4 orthorhombic titanium aluminide produced by pulse laser welding. Izvestiya. Non-Ferrous Metallurgy. 2023;(2):57-73. https://doi.org/10.17073/0021-3438-2023-2-57-73

Views: 501


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)