Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Mechanical properties and electrical conductivity of Al–Y–Sс–Er cold worked alloy

https://doi.org/10.17073/0021-3438-2023-2-49-56

Abstract

Aluminum alloys alloyed with rare earth and transition metal are promising materials for electric energy transportation due to their high properties of strength, thermal stability, and electrical conductivity. The features of strengthening, their mechanical properties and electrical conductivity of Al–0.2Y–0.2Sc–0.3Er alloy after cold rolling have been established. The alloy as a cast structure is presented by aluminum solid solution (Al) and dispersed eutectics with τ2 (Al75-76Er11-17Y7-14) phase upon complete dissolution of scandium in (Al), and a content of yttrium and erbium at the level of 0.2–0.3 % each. Cold rolling the ingot accelerates strengthening upon annealing at 270 and 300 °C, reducing the time of achieving peak hardness. The maximum strengthening due to precipitation of L12 dispersoid of Al3(Sc,Y,Er) phase with the average particle size up to 10 nm is achieved after 7 h of annealing at 300 °C after cold rolling. This shows the prevailing heterogeneous mechanism of nucleation due to defects accumulated during cold rolling which stimulates strengthening. The eutectic particles are located mainly along the boundaries, elongated in the rolling direction. Irrespective of the mode of sheet fabrication, the alloy demonstrates high thermal stability up to 400 °C. During annealing of the sheets to 450 °C, their non-recrystallized structure is retained. Ingot annealing at t = 300 °C in 7 h and cold rolling with subsequent annealing under the same conditions provide a high level of mechanical properties and electrical conductivity: σ0.2 = 194 MPa, σu = 210 MPa, δ = 12.1 % and IACS – 60,1 %. The alloy has demonstrated high yield stress up to 100 h of annealing at t = 300 °C.

About the Authors

L. E. Gorlov
National University of Science and Technology “MISIS”
Russian Federation

Leonid Е. Gorlov – Student, Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology (NUST) “MISIS”.

4 bld. 1 Leninkiy Prosp., Moscow 119049



M. V. Glavatskikh
National University of Science and Technology “MISIS”
Russian Federation

Mariya V. Glavatskikh – Graduate Student, Department of Physical Metallurgy of Non-Ferrous Metals, NUST MISIS.

4 bld. 1 Leninkiy Prosp., Moscow 119049



R. Yu. Barkov
National University of Science and Technology “MISIS”
Russian Federation

Ruslan Yu. Barkov – Cand. Sci. (Eng.), Assistant, Department of Physical Metallurgy of Non-Ferrous Metals, NUST MISIS.

4 bld. 1 Leninkiy Prosp., Moscow 119049



A. V. Pozdniakov
National University of Science and Technology “MISIS”
Russian Federation

Andrei V. Pozdniakov – Cand. Sci. (Eng.), Associate Professor, Department of Physical Metallurgy of NonFerrous Metals, NUST MISIS.

4 bld. 1 Leninkiy Prosp., Moscow 119049



References

1. Drits M.E., Dutkiewicz J., Toropova L.S., Salawa J. The effect of solution treatment on the ageing processes of Al—Sc alloys. Crystal Research and Technology. 1984;19:1325—1330. https://doi.org/10.1002/crat.2170191014

2. Drits M.Ye., Ber L.B., Bykov Yu.G., Toropova L.S., Anastaseva G.K. Aging of alloy Al—0.3at.%Sc. Physics of Metals and Metallography. 1984;57(6):118—126.

3. Blake N., Hopkins M.A. Constitution and age hardening of Al—Sc alloys. Journal of Materials Science. 1985;20:2861—2867. https://doi.org/10.1007/BF00553049

4. Torma T., Kovács-Csetényi E., Turmezey T., Ungár T., Kovács I. Hardening mechanisms in Al—Sc alloys. Journal of Materials Science. 1989;24:3924—3927. https://doi.org/10.1007/bf01168955

5. Brodova I.G., Polents I.V., Korzhavina O.A., Popel P.S., Korshunov I.P., Esin V.O. Structural investigations of rapidly crystallized Al—Sc alloys. Melts Moscow. 1992;4(5):392—397.

6. Nakayama M., Furuta A., Miura Y. Precipitation of Al3Sc in Al—0.23wt.%Sc аlloy. Materials Transactions. 1997;38(10):852—857. https://doi.org/10.2320/matertrans1989.38.852

7. Norman A.F., Prangnell P.B., McEwen R.S. The solidification behaviour of dilute aluminium-scandium alloys. Acta Materialia. 1998;46:5715—5732. https://doi.org/10.1016/S1359-6454(98)00257-2

8. Hyde K.B., Norman A.F., Prangnell P.B. The growth morphology and nucleation mechanism of primary L12 Al3Sc particles in Al—Sc alloys. Materials Science Forum. 2000;331-337:1013—1018. https://doi.org/10.4028/www.scientific.net/msf.331-337.1013

9. Davydov V.G., Rostova T.D., Zakharov V.V., Filatov Y.A., Yelagin V.I. Scientific principles of making an alloying addition of scandium to aluminium alloys. Materials Science and Engineering: A. 2000;280:30—36. https://doi.org/10.1016/S0921-5093(99)00652-8

10. Jones M.J., Humphreys F.J. Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behavior of deformed aluminium. Acta Materialia. 2003;51:2149—2159. https://doi.org/10.1016/S1359-6454(03)00002-8

11. Costa S., Puga H., Barbosa J., Pinto A.M.P. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al—Sc alloys. Materials and Design. 2012;42:347—352. https://doi.org/10.1016/j.matdes.2012.06.019

12. Fuller C.B., Seidman D.N., Dunand D.C. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Materialia. 2003;51(16):4803—4814. https://doi.org/10.1016/S1359-6454(03)00320-3

13. Robson J.D. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Materialia. 2004;52:1409—1421. https://doi.org/10.1016/j.actamat.2003.11.023

14. Forbord B., Lefebvre W., Danoix F., Hallem H., Marthinsen K. Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scripta Materialia. 2004;51:333. https://doi.org/10.1016/j.scriptamat.2004.03.033

15. Belov N.A., Alabin A.N., Eskin D.G., Istomin-Kastrovskii V.V. Optimization of hardening of Al—Zr—Sc cast alloys. Journal of Materials Science. 2006;41:5890—5899. https://doi.org/10.1007/S10853-006-0265-7

16. Knipling K.E., Karnesky R.A., Lee C.P., Seidman D.N. Precipitation evolution in Al—0.1Sc, Al—0.1Zr and Al— 0.1Sc—0.1Zr (at.%) alloys during isochronal aging. Acta Materialia. 2010;58(15):5184-5195. https://doi.org/10.1016/j.actamat.2010.05.054

17. Song M., Fang Y. He S. Effects of Zr content on the yield strength of an Al—Sc alloy. Journal of Materials Engineering and Performance. 2011;20:377—381. https://doi.org/10.1007/s11665-010-9693-2

18. Rokhlin L.L., Bochvar N.R., Leonova N.P. Study of decomposition of oversaturated solid solution in Al—Sc—Zr alloys at different ratio of scandium and zirconium. Inorganic Materials: Applied Research. 2011;2:517—520. https://doi.org/10.1134/S2075113311050170

19. McNamara C.T., Kampe S.L., Sanders P.G., Swenson D.J. The effect of cold work on the precipitation and recrystallization kinetics in Al—Sc—Zr alloys. Light Metals. 2013;379—382. https://doi.org/10.1007/978-3-319-65136-1_66

20. Guan R., Shen Y., Zhao Z., Wang X. A high-strength, ductile Al—0.35Sc—0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. Journal of Materials Science and Technology. 2017;33:215—223. https://doi.org/10.1016/j.jmst.2017.01.017

21. Liu L., Jiang J.-T., Zhang B., Shao W.-Z., Zhen L. Enhancement of strength and electrical conductivity for a dilute Al—Sc—Zr alloy via heat treatments and cold drawing. Journal of Materials Science and Technology. 2019;35(6):962—971. https://doi.org/10.1016/j.jmst.2018.12.023

22. Harada Y., Dunand D.C. Microstructure of Al3Sc with ternary transition-metal additions. Materials Science and Engineering: A. 2002;329/331:686—695. https://doi.org/10.1016/S0921-5093(01)01608-2

23. Karnesky R.A., van Dalen M.E, Dunand D.C., Seidman D.N. Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al— 0.08at.%Sc alloy. Scripta Materialia. 2006;55(5):437— 440. https://doi.org/10.1016/j.scriptamat.2006.05.021

24. van Dalen M.E., Dunand D.C., Seidman D.N. Nanoscale precipitation and mechanical properties of Al— 0.06at.%Sc alloys microalloyed with Yb or Gd. Journal of Materials Science. 2006;41:7814—7823. https://doi.org/10.1007/S10853-006-0664-9

25. Rokhlin L.L., Dobatkina T.V., Bochvar N.R., Lysova E.V., Tarytina I.E. Effect of yttrium and chromium on the recrystallization of Al—Sc alloys. Russian Metallurgy (Metally). 2007;335—339. https://doi.org/10.1134/s0036029507040131

26. Harada Y., Dunand D.C. Microstructure of Al3Sc with ternary transition-metal additions. Intermetallics. 2009;17(1-2):17—24. https://doi.org/10.1016/j.intermet.2008.09.002

27. Karnesky R.A., Dunand D.C., Seidman D.N. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Materialia. 2009;57(14):4022—4031. https://doi.org/10.1016/j.actamat.2009.04.034

28. Krug M.E., Werber A., Dunand D.C., Seidman D.N. Core—shell nanoscale precipitates in Al—0.06at.%Sc microalloyed with Tb, Ho, Tm or Lu. Acta Materialia. 2010;58(1):134—145. https://doi.org/10.1016/j.actamat.2009.08.074

29. Rokhlin L.L., Bochvar N.R., Boselli J., Dobatkina T.V. Investigation of the phase relations in the Al-Rich alloys of the Al—Sc—Hf system in solid state. Journal of Phase Equilibria and Diffusion. 2010;31:327—332. https://doi.org/10.1007/S11669-010-9710-Z

30. Van Dalen M.E., Dunand D.C., Seidman D.N. Microstructural evolution and creep properties of precipitation-strengthened Al—0.06Sc—0.02Gd and Al—0.06Sc— 0.02Yb (at.%) alloys. Acta Materialia. 2011;59(13):5224— 5237. https://doi.org/10.1016/j.actamat.2011.04.059

31. Pozdniakov A.V., Barkov R.Yu. Microstructure and mechanical properties of novel Al—Y—Sc alloys with high thermal stability and electrical conductivity. Journal of Materials Science and Technology. 2020:1—6. https://doi.org/10.1016/j.jmst.2019.08.006

32. Barkov R.Yu., Yakovtseva O.A., Mamzurina O.I., Loginova I.S., Medvedeva S.V., Proviryakov A. S., Mikhailovskaya A.V., Pozdniakov A.V. Effect of Yb on the Structure and Properties of an Electroconductive Al—Y—Sc Alloy. Physics of Metals and Metallography. 2020;121(6):604—609. https://doi.org/10.1134/S0031918X20060022

33. Barkov R.Yu., Mikhaylovskaya A.V., Yakovtseva O.A., Loginova I.S., Prosviryakov A.S., Pozdniakov A.V. Effects of thermomechanical treatment on the microstructure, precipitation strengthening, internal friction, and thermal stability of Al—Er— Yb—Sc alloys with good electrical conductivity. Journal of Alloys and Compounds. 2021;855(1):157— 367. https://doi.org/10.1016/j.jallcom.2020.157367

34. Pozdniakov A.V., Barkov R.Yu., Prosviryakov A.S., Churyumov A.Yu., Golovin I.S., Zolotorevskiy V.S. Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al—Er—Y alloy. Journal of Alloys and Compounds. 2018;765:1—6. https://doi.org/10.1016/j.jallcom.2018.06.163

35. Liu X., Du Y., Liu S., Cheng K., Zhang Z. Phase equilibria and crystal structure of ternary compounds in Al-rich corner of Al—Er—Y system at 673 and 873K. Journal of Materials Science and Technology. 2021;60:128—138. https://doi.org/10.1016/j.jmst.2020.04.047

36. ASM Handbook. Properties and selection: Nonferrous alloys and special-purpose materials. V.2. The Materials Information Company, 2010.


Review

For citations:


Gorlov L.E., Glavatskikh M.V., Barkov R.Yu., Pozdniakov A.V. Mechanical properties and electrical conductivity of Al–Y–Sс–Er cold worked alloy. Izvestiya. Non-Ferrous Metallurgy. 2023;(2):49-56. https://doi.org/10.17073/0021-3438-2023-2-49-56

Views: 373


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)