Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Structure and tensile fracture mechanism of aluminum matrix composites produced by internal oxidation

https://doi.org/10.17073/0021-3438-2023-2-38-48

Abstract

This article presents experimental results of resistance against fracture upon static tension of cast aluminum matrix composites based on aluminum with various content of Al2O3 strengthening phase. The cast aluminum matrix composite materials were produced by the technology based on burnout of aluminum melt upon interaction with oxygen. Two batches of ingots with various content of solid phase were smelted for tests of static strength. The average particle size of strengthening phase of predominantly prismatic morphology was 60–80 μm, and their content varied from 15 to 25 %. The fracture surfaces obtained upon static uniaxial tension of the considered samples were studied on the samples destroyed at maximum stress. The fracture surfaces were analyzed using an optical microscope with expanded options due to improved long-focus system and digital processing of images based on unique procedure of 3D structure analysis. For indepth analysis of characteristic fracture region a scanning electron microscope was used equipped with energy and wavelength dispersive elemental analyzers. It was established in the studies that in the samples with lower content of dispersed phase, the fracture is characterized by mixed heterogeneous in terms of macrogeometry pattern. This can be interpreted as dry fibrous fracture with visible crystalline pimples and breakaways. With an increase in the solid phase, a mixed, sufficiently homogenous in terms of macrogeometry, fracture pattern of fanlike fibrous structure can be observed. Crystalline pimples were also detected of a different fracture surface area, as well as breakaways of other geometrical sizes. The features of changes in the relief of fracture surface and the fracture mechanisms of the obtained composites have been detected and described.

About the Authors

V. V. Mylnikov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Vladimir V. Mylnikov – Cand. Sci. (Eng.), Associate Professor of the Department of Construction Technologies; Leading Researcher of the Department of Scientific Research, Innovation and Project Work; Head of the Laboratory of Strength and Plasticity of Functional Materials, NNGASU.

65 Ilyinskaya Str., Nizhny Novgorod 603950, Russia



E. A. Chernyshov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Evgenii A. Chernyshov – Dr. Sci. (Eng.), Professor, Leading Researcher of the Department of Scientific Research, Innovation and Project Work, NNGASU.

65 Ilyinskaya Str., Nizhny Novgorod 603950, Russia



A. D. Romanov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev
Russian Federation

Aleksei D. Romanov – Postgraduate Student, Nizhny Novgorod State Technical University n.a. R.E. Alekseev.

24 Minina Str., Nizhny Novgorod 603950



M. V. Mylnikova
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Marina V. Mylnikova – Junior Researcher of the Department of Scientific Research, Innovation and Project Work, NNGASU.

65 Ilyinskaya Str., Nizhny Novgorod 603950



E. A. Zakharychev
Nizhny Novgorod State University of Architecture and Civil Engineering; Institute of Chemistry of N.I. Lobachevsky National Research University
Russian Federation

Evgenii A. Zakharychev – Cand. Sci. (Chem.), Head of the Laboratory of Polymer Materials, Research Institute of Chemistry of N.I. Lobachevsky National Research University; Junior Researcher of the Department of Scientific Research, Innovation and Project Work, NNGASU.

65 Ilyinskaya Str., Nizhny Novgorod 603950; 23 Gagarin Prosp., Nizhny Novgorod, GSP-20 603950



N. A. Ryabov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Nikolai A. Ryabov – Student, Technician of the Department of Scientific Research, Innovation and Project Works, NNGASU.

65 Ilyinskaya Str., Nizhny Novgorod 603950, Russia



References

1. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategic trends of development of structural materials and technologies of their processing for modern and future aircraft engines. The Paton Welding Journal. 2013;(11):23—32.

2. Liu Y. B., Lim S. C., Lu L., Lai M.O. Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques. Journal of Materials Science. 1994;29:1999—2007.

3. Gorbunov P.Z., Gal V.V. Promising dispersed-hardened composite materials. Proizvodstvenno-tehnicheskij opyt. 1993;1—2:81—84. (In Russ.).

4. Rohatgi P. Cast aluminum matrix composites for automotive applications. JOM. 1991;43(4):10—16.

5. Kurganova Y.A., Chernyshova T.A., Kobeleva L.I., Kurganov S.V. Service properties of aluminum-matrix precipitation-hardenet composite materials and the prospects of their use on the modern structural material market. Russian metallurgy (Metally). 2011;(7):663—666.

6. Belov N.A., Belov V.D., Alabin A.N., Mishurov S.S. New generation of economically alloyed aluminum alloys. Metallurgist. 2010;54(5-6):311—316.

7. Луц А.Р., Галочкина И.А. Алюминиевые композиционные сплавы — сплавы будущего. Самара.: СамГТУ, 2013.

8. Kurganova Yu.A. Prospects for the development of metal matrix composite materials for industrial purposes. Servis v Rossii i za rubezhom. 2012;3(30):235—240. (In Russ.).

9. Goswami R.K., Dhar Ajay, Srivastava A.K., Gurta Anil K. Effect of deformation and ceramic reinforcement on work hardening behavior of hot extruded 2124 Al—SiC metal matrix composites. Journal of Composite Materials. 1999;33(13):1160—1172.

10. NADCA Product SpecificationStandards for Die Casting: Aluminum, Aluminum-MMC, Copper, Magnesium, Zinc and ZA Alloys. 7-th ed. Wheeling, Illinois, 2009.

11. Moyal J.S., Lopez-Esteban S., Pecharroma’n C. The challenge of ceramic/metal microcomposites and nanocomposites. Progress in Material Science. 2007;52:1017—1090.

12. Kandalova E.G., Luts A.R., Makarenko A.G., Orlov A.V. Technology for the production of Al—TiC composite from powder exothermic mixtures directly in the aluminum melt. Zagotovitel’nye proizvodstva v mashinostroenii. 2005;(11):47—51. (In Russ.).

13. Кем А.Ю. Технологические основы производства порошковых и композиционных наноструктурных материалов и изделий. Ростов-на-Дону: Изд. центр ДонГТУ, 2008.

14. Minaev A.M., Pruchkin V.A. On the internal oxidation of high-purity aluminum. Voprosy sovremennoj nauki i praktiki. 2011;(6):48—53. (In Russ.).

15. Mitra R., Mahagan Y.R. Interfaces in discontinuously reinforced metal matrix composites: An overview. Bulletin of Materials Science. 1995;18(4):405—434.

16. Afanas’ev V.K., Gertsen V.V., Dolgova S.V., Musohranov Ju.M. On the effect of water vapor on the formation of properties of high-silicon Al alloys. Metallurgija mashinostroenija. 2015;(5):17—22. (In Russ.).

17. Muolo M.L., Passerone V.A., Passerone D. Oxygen influence on ceramics wettability by liquid metals Ag/α-Al2O3-experiments and modelling. Materials Science and Engineering: A. 2008;3(495):153—158.

18. Orlov A.V., Luts A.R., Kandalova E.G., Makarenko A.G. Technology for producing the Al—TiC composite from powder exothermic mixtures directly in the aluminum melt. Zagotovitel’nye proizvodstva v mashinostroenii. 2005;(11):54—61. (In Russ.).

19. Barathet V., Auradi V. Fractographic characterization of Al2O3 particulates reinforced Al2014 alloy composites subjected to tensile loading. Frattura ed Integrità Strutturale. 2021;57:14—23. https://doi.org/10.3221/IGF-ESIS.57.02

20. Olmos L., Martin Christophe L., Bouvard D. Sintering of mixtures of powders: Experiments and modelling. Powder Technology. 2009;190:134—140.

21. Agureev L.E., Kostikov V.I., Rizakhanov R.N., Eremeeva Zh.V., Barmin A.A., Savushkina S.V., Ashmarin A.A., Ivanov B.S., Rudshtein R.I. Aluminum powder composites reinforced by oxide nanoparticles used as microadditives. International Journal of Nanomechanics Science and Technology. 2014;5(3):201—211.

22. Chernyshov E.A., Romanova E.A., Romanov A.D., Romanov I.D., Mylnikov V.V. Elaboration of aluminium based metalmatrix composite manufacturing. In: IOP Conference Series: Materials Science and Engineering. 2019:012046.

23. Chernyshov E.A., Romanov A.D., Romanova E.A., Myl’nikov V.V. Development of technology for obtaining aluminum matrix cast composite material by synthesis of the hardening phase of aluminum oxide in aluminum melt. Izvestija vuzov. Poroshkovaja metallurgija i funkcional’nye pokrytija. 2017;(4):29—36. (In Russ.).

24. Chernyshov E.A., Lonchakov S.Z., Romanov A.D., Myl’nikov V.V., Romanova E.A. Investigation of the microstructure of an alumomatric dispersed-filled cast composite material obtained by internal oxidation. Perspektivnye materialy. 2016;(9):78—83. (In Russ.).

25. Khedera A.R.I., Marahleh G.S., Al-Jamea D.M.K. Strengthening of Aluminum by SiC, Al2O3 and MgO. Jordan Journal of Mechanical and Industrial Engineering. 2011;5(6):533—541.

26. Myl’nikov V.V., Romanov A.D., Chernyshov E.A. Studies of the influence of the amount of the hardening phase of a dispersed-hardened composite material based on aluminum on the regularities of the destruction process. Izvestija vuzov. Poroshkovaja metallurgija i funkcional’nye pokrytija. 2018;(3):55—63. (In Russ.).


Review

For citations:


Mylnikov V.V., Chernyshov E.A., Romanov A.D., Mylnikova M.V., Zakharychev E.A., Ryabov N.A. Structure and tensile fracture mechanism of aluminum matrix composites produced by internal oxidation. Izvestiya. Non-Ferrous Metallurgy. 2023;(2):38-48. https://doi.org/10.17073/0021-3438-2023-2-38-48

Views: 365


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)