Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

V–Cd nanoparticle-formed alloys: fabrication, phase composition and structure

https://doi.org/10.17073/0021-3438-2023-1-66-74

Abstract

The results of the study of targeted sputtering and deposition of ultrafine vanadium and cadmium particles on substrates that are not heated and shifted with respect to the substrate plasma currents are revealed. As a result of the conducted studies, coatings were obtained in the range with a concentration of cadmium from 9.6 to 88.6 at.%. The critical size of vanadium particles capable of forming alloys with cadmium is 0.6 nm. The concentration limit for the presence of solid solutions of cadmium in vanadium is the cadmium content of ~37 at.%, at a higher cadmium content the film coating is represented by a mixture of cadmium phases and a solid solution of cadmium in vanadium. The dependence of the lattice parameter of α-vanadium on the content of cadmium in it corresponds to the expression: а [nm] = 8·10–4СCd + 0.3707, where СCd is the concentration of cadmium, at.%. On the surface of the sample in the region of solid solutions (31.6 at.% Cd), the presence of threadlike crystals of cadmium was found, the reason for the appearance of which is the lattice pressure of the matrix metal. Annealing of films rich in cadmium (69.5 at.%) in vacuum is accompanied by cracking of the coating and the formation of pores. The latter can be used as a method for obtaining porous vanadium.

About the Authors

V. N. Volodin
Institute of Nuclear Physics, Ministry of Energy of Republic of Kazakhstan
Kazakhstan

 Dr. Sci. (Phys.-Math.), Dr. Sci. (Eng.), Prof., Principal Scientist of the Laboratory “Ion-Plasma Technologies”

1 Ibragimov str., Almaty, 050032



Yu. Zh. Tuleushev
Institute of Nuclear Physics, Ministry of Energy of Republic of Kazakhstan
Kazakhstan

Cand. Sci. (Phys.-Math.), Prof., Leading Scientist of the Laboratory “Ion-Plasma Technologies”

1 Ibragimov str., Almaty, 050032



A. K. Kaliyeva
Institute of Nuclear Physics, Ministry of Energy of Republic of Kazakhstan
Kazakhstan

 Junior Research Scientist of the Laboratory “Ion-Plasma Technologies”

1 Ibragimov str., Almaty, 050032



E. A. Zhakanbayev
Institute of Nuclear Physics, Ministry of Energy of Republic of Kazakhstan
Kazakhstan

 Cand. Sci. (Phys.-Math.), Head of the Laboratory “Ion-Plasma Technologies”

1 Ibragimov str., Almaty, 050032



A. K. Mamyrbayev
Institute of Nuclear Physics, Ministry of Energy of Republic of Kazakhstan
Kazakhstan

Engineer of the Laboratory “Ion-Plasma Technologies”

1 Ibragimov str., Almaty, 050032



References

1. Peppiatt S.J. The melting of particles. II. Bismuth. Proceedings of the Royal Society of London. Series A. 1975; A345 (1642): 401—412. https://doi.org/10.1098/rspa.1975.0145

2. Berty J., David M.J., Lafourcade L. Etude de la surfusion de films mines de bismuth par diffracyon des electrons. Thin Solid Films. 1977; 46 (2): 177—185. https://doi.org/10.1016/0040-6090(77)90060-8

3. Zhdanov G.S. Temperature hysteresis of the phase transition and the crystallization mechanism of thin metal films. Fizika tverdogo tela. 1977; 19 (1): 299—301. (In Russ.).

4. Buffat Ph., Borel J-P. Size effect on the melting temperature of gold particles. Physical Review A. 1976; 13 (6): 2287—2298. https://doi.org/10.1103/PhysRevA.13.2287

5. Perepezko J.H., Rasmussen D.H. Solidification of highly supercooled liquid metal and alloys. Journal of Non-Crystalline Solids. 1993; 156—158: 463—472. https://doi.org/10.1016/0022-3093(93)90002-F

6. Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews. 2006; 35: 583—592

7. Zou C., Gao Y., Yang B., Zhai Q. Size dependent melting properties of Sn nanoparticles by chemical reduction synthesis. Transactions of Nonferrous Metals Society of China. 2010; 20 (2): 248—253. https://doi.org/10.1016/S1003-6326(09)60130-8

8. Jiang H., Moon K., Dong H. Size dependent melting properties of tin nanoparticles. Chemical Physics Letters. 2006; 429 (4): 492—496. https://doi.org/10.1016/j.cplett.2006.08.027

9. Stowell M.J. The solid-liquid interfacial free energy of lead from supercooling data. Philosophical Magazine: A Journal оf Theoretical, Experimental аnd Applied Physics. 1970; 22 (176): 1—6. https://doi.org/10.1080/14786437008228146

10. Qingshan F., Yongqiang X., Zixiang C. Size — and shape — dependent surface thermodynamic properties of nanocrystals. Journal of Physics and Chemistry of Solids. 2018; 116: 79—85. https://doi.org/10.1016/j.jpcs.2018.01.018

11. Mu J., Zhu Z.W., Zhang H.F. Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix. Journal of Applied Physics. 2012; 111 (4): 043515 (1—4). https://doi.org/10.1063/1.3686624

12. Luo W., Su K., Li K., Li Q. Connection between nanostructured materials’ size dependent melting and thermodynamic properties of bulk materials. Solid State Communications. 2011; 151 (3): 229—233. https://doi.org/10.1016/j.ssc.2010.11.025

13. Родунер Э. Размерные эффекты в наноматериалах. М.: Техносфера, 2010

14. Tuleushev Yu.Zh., Volodin V.N., Zhakanbaev E.A. New Ta3Be phase in the film coatings of tantalum-beryllium alloys. Physics of Metals and Metallography. 2019. 120 (4): 361—365. https://doi.org/10.1134/S0031918X19040148

15. Volodin V.N., Tuleushev Yu.Zh., Trebukhov S.A., Nitsenko A.V., Burabaeva N.V. Fabrication of binary niobium alloys with low-melting metals by the deposition of nanoparticles. Russian Journal of Non-Ferrous Metals. 2019; 60 (6): 639—645. https://doi.org/10.3103/S106782121906021X

16. Volodin V.N., Tuleushev Yu.Zh., Zhakanbaev E.A., Trebukhov S.A., Burabaeva N.V., Nitsenko A.V. Synthesis of intermetallic phases in the Nb—Cd and Mo—Cd systems by ion-plasma sputtering and atomic layer deposition of metals in vacuum. Inorganic Materials. 2020; 56 (1): 28—34. https://doi.org/10.1134/S0020168520010185

17. Диаграммы состояния двойных металлических систем: Справочник. Т. 3. Под ред. Н.П. Лякишева. М.: Машиностроение, 2001.

18. Малышев В.П., Турдукожаева А.М., Оспанов Е.А., Саркенов Б. Испаряемость и кипение простых веществ. М.: Научный мир, 2010.

19. Володин В.Н., Ниценко А.В., Требухов С.А.,Бурабаева Н.М., Тулеушев Ю.Ж. Получение двойных сплавов кадмия с тугоплавкими металлами осаждением наночастиц. В сборнике докладов ХI международного конгресса «Цветные металлы и минералы — 2019» (Красноярск, 16—20 сент. 2019 г.). Красноярск: Научно-инновационный центр, 2019. С. 1019—1028.

20. Физическое металловедение. Под ред. Р.У. Кана, П. Хаазена. М.: Металлургия, 1987.

21. Chuang T.H., Lin H.J., Chi C.C. Rapid growth of tin whiskers on the surface of Sn—6.6Lu alloy. Science: Materials. 2007; 56 (1): 45—48.

22. Volodin V.N., Tuleushev Yu.Zh., Kenzhaliev B.K., Trebukhov S.A. Thermal degradation of hard alloys of niobium-cadmium system at low pressure. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2020; (1 (312)): 41—47. (In Russ.). https://doi.org/10.31643/2020/6445/05


Review

For citations:


Volodin V.N., Tuleushev Yu.Zh., Kaliyeva A.K., Zhakanbayev E.A., Mamyrbayev A.K. V–Cd nanoparticle-formed alloys: fabrication, phase composition and structure. Izvestiya. Non-Ferrous Metallurgy. 2023;1(1):66-74. https://doi.org/10.17073/0021-3438-2023-1-66-74

Views: 365


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)