Preview

Izvestiya. Non-Ferrous Metallurgy

Advanced search

Investigation of castability, mechanical, corrosion properties and flammability of ML-OPB and EWZ43 magnesium alloys

https://doi.org/10.17073/0021-3438-2023-1-39-55

Abstract

Magnesium alloys are usually considered as structural materials when the weight reduction is important - in aircraft and space industry for example. In recent years, there has been an increase in the use of new generation ignition-proof high-strength magnesium alloys in the design of aircraft parts. The properties of new ignition-proof casting magnesium alloys ML-OPB (Mg–6.7Y–2.6Zn–0.5Zr–0.35Ce– 0.35Yb; wt.%) and EWZ43 (Mg–3.8Y–4.4Nd–0.6Zr–0.6Zn; wt.%) were investigated and compared with properties of commercial magnesium alloys. The microstructure of investigated alloys in the as-cast condition comprises of a magnesium solid solution and a significant amount of eutectic. Heat treatment according to the T6 mode results in change in the eutectic phase’s morphology and also to their partial dissolution in the magnesium matrix. Long-term high-temperature holding, simulating operating conditions (500 h at 300 °C), leads to the formation of precipitates along the grain boundaries in both alloys, significantly reducing the mechanical properties. During the oxidation of the samples, it was established that the main components that involved into the oxide film and provides the protective properties of the alloys is Y, Nd and Yb. The investigated alloys have a high strength, which is not lower than that of the ML10 alloy. At the same time, the advantage of the ML-OPB alloy is a high elongation at fracture, while the EWZ43 alloy is characterized by high strength. The corrosion rate of the investigated alloys exceeds the corrosion rate of known commercial ML10 and AZ91 alloys, which implies the need for additional protection against corrosion of investigated alloys. At the same time, the castability of ML-OPB and EWZ43 alloys is no lower than that of most commercial magnesium alloys. An oxide film with high Y content and high protective properties is formed when the alloys interact with the sand mold bonded with furan resin. The ignition temperature of the investigated alloys is 100–150 °C higher than that of the ML10 alloy. The flammability test of alloys in the flame of a gas burner, made on cone samples and typical aircraft castings «bracket», showed that ML-OPB and EWZ43 alloys are almost non-flammable under the conditions of experiment.

About the Authors

V. E. Bazhenov
National University of Science and Technology “MISIS” 
Russian Federation

Cand. Sci. (Eng.), Assistant Prof., Department of Foundry Technologies and Material Art Working (FT&MAW)

Leninskii pr., Moscow, 119049



I. I. Baranov
National University of Science and Technology “MISIS”
Russian Federation

Educat. Master, Department of FT&MAW

Leninskii pr., Moscow, 119049



V. V. Lyskovich
National University of Science and Technology “MISIS”
Russian Federation

Lab. Assistant, Department of FT&MAW

Leninskii pr., Moscow, 119049



A. V. Koltygin
National University of Science and Technology “MISIS”
Russian Federation

Andrei V. – Cand. Sci. (Eng.), Assistant Prof., Department of FT&MAW

Leninskii pr., Moscow, 119049



A. V. Sannikov
National University of Science and Technology “MISIS”
Russian Federation

Andrei V.  – Cand. Sci. (Eng.), Assistant Prof., Department of FT&MAW

Leninskii pr., Moscow, 119049



K. A. Kyaramyan
Branch of JSC “United Engine Corporation” Research Institute of Technology and Organization of Engine Production
Russian Federation

Head of Department 

16, build. 182 Budennogo av., Moscow, 105118



V. D. Belov
National University of Science and Technology “MISIS”
Russian Federation

Vladimir D.  – Dr. Sci. (Eng.), Head of Department
of FT&MAW

Leninskii pr., Moscow, 119049



S. P. Pavlinich
National University of Science and Technology “MISIS”
Russian Federation

Sergei P.  – Dr. Sci. (Eng.), Director

Leninskii pr., Moscow, 119049



References

1. Czerwinski F. Overcoming barriers of magnesium ignition and flammability. Advanced Materials and Processes. 2014; 172: 28–31.

2. Marker T.R. Development of a laboratory-scale flammability test for magnesium alloys used in aircraft seat construction. Scientific report No. DOT/FAA/TC-13/52. Springfield: National Technical Information Services (NTIS), 2014.

3. Tekumalla S., Gupta M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Materials and Design. 2017; 113: 84–98. https://doi.org/10.1016/j.matdes.2016.09.103

4. Tan Q., Atrens A., Mo N., Zhang M.X. Oxidation of magnesium alloys at elevated temperatures in air: A review. Corrosion Science. 2016; 112: 734–759. https://doi.org/10.1016/j.corsci.2016.06.018

5. Fan J.F., Yang Ch.L., Han G., Fang S., Yang W.D., Xu B.S. Oxidation behavior of ignition-proof magnesium alloys with rare earth addition. Journal of Alloys and Compounds. 2011; 509 (5): 2137–2142. https://doi.org/10.1016/j.jallcom.2010.10.168

6. Aydin D.S., Bayindir Z., Hoseini M., Pekguleryuz M.O. The high temperature oxidation and ignition behavior of Mg–Nd alloys. Рart I: The oxidation of dilute alloys. Journal of Alloys and Compounds. 2013; 569: 35–44. https://doi.org/10.1016/j.jallcom.2013.03.130

7. Zhao S., Zhou H., Zhou T., Zhang Z., Lin P., Ren L. The oxidation resistance and ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La. Corrosion Science. 2013; 67: 75–81. https://doi.org/10.1016/j.corsci.2012.10.007

8. Fan J.F., Cheng S.L., Xie H., Hao W.X., Wang M., Yang G.C., Zhou Y.H. Surface oxidation behavior of Mg—Y—Ce alloys at high temperature. Metallurgical and Materials Transactions A. 2005; 36 (1): 235–239. https://doi.org/10.1007/s11661-005-0155-7

9. Cheng C., Lan Q., Wang A., Le Q., Yang F., Li X. Effect of Ca additions on ignition temperature and multi-stage oxidation behavior of AZ80. Metals. 2018; 8: 766. https://doi.org/10.3390/met8100766

10. Inoue S.I., Yamasaki M., Kawamura Y. Formation of an incombustible oxide film on a molten Mg–Al–Ca alloy. Corrosion Science. 2017; 122: 118–122. https://doi.org/10.1016/j.corsci.2017.01.026

11. Kim Y.H., Kim W.J. Flame-resistant Ca-containing AZ31 magnesium alloy sheets with good mechanical properties fabricated by a combination of strip casting and high-ratio differential speed rolling methods. Metals and Materials International. 2015; 21: 374–381. https://doi.org/10.1007/s12540-015-4338-5

12. Duyunova V.A., Leonov A.A., Trofimov N.V., Rostovtseva A.S. Effect of qualitative and quantitative ratios of rare-earth elements in a new fireproof cast magnesium alloy. Russian Metallurgy (Metally). 2021; 2021 (11): 1409–1412. https://doi.org/10.1134/S0036029521110033

13. Konstantinov I.L., Baranov V.N., Sidelnikov S.B., Kulikov B.P., Bezrukikh A.I., Frolov V.F., Orelkina T.A., Voroshilov D.S., Yuryev P.O., Belokonova I.N. Investigation of the structure and properties of cold-rolled strips from experimental alloy 1580 with a reduced scandium content. International Journal of Advanced Manufacturing Technology. 2020; 109: 443–450. https://doi.org/10.1007/s00170-020-05681-4

14. Колтыгин А.В., Баженов В.Е., Белов В.Д., Матвеев С.В. Литейный магниевый сплав: Пат. 2687359 (РФ). 2018.

15. Koltygin A.V., Bazhenov V.E., Khasenova R.S., Komissarov A.A., Bazlov A.I., Bautin V.A. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. International Journal of Minerals, Metallurgy and Materials. 2019; 26 (7): 858–868. https://doi.org/10.1007/s12613-019-1801-1

16. Zhu Y.M., Morton A.J., Nie J.F. The 18R and 14H longperiod stacking ordered structures in Mg–Y–Zn alloys. Acta Materialia. 2010; 58 (8): 2936–2947. https://doi.org/10.1016/j.actamat.2010.01.022

17. Xu D., Han E.H., Xu Y. Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review. Progress in Natural Science: Materials International. 2016; 26 (2): 117–128. https://doi.org/10.1016/j.pnsc.2016.03.006

18. Luo S.Q., Tang A.T., Pan F.S., Song K., Wang W.Q. Effect of mole ratio of Y to Zn on phase constituent of Mg–Zn– Zr–Y alloys. Transactions of Nonferrous Metals Society of China. 2011; 21 (4): 795–800. https://doi.org/10.1016/S1003-6326(11)60783-8

19. Xu D.K., Tang W.N., Liu L., Xu Y.B., Han E.H. Effect of W-phase on the mechanical properties of as-cast Mg– Zn–Y–Zr alloys. Journal of Alloys and Compounds. 2008; 461 (1–2): 248–252. https://doi.org/10.1016/j.jallcom.2007.07.096

20. Xu D.K., Tang W.N., Liu L., Xu Y.B., Han E.H. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys. Journal of Alloys and Compounds. 2007; 432 (1–2): 129–134. https://doi.org/10.1016/j.jallcom.2006.05.123

21. Bazhenov V.E., Saidov S.S., Tselovalnik Yu.V., Voropaeva O.O., Plisetskaya I.V., Tokar A.A., Bazlov A.I., Bautin V.A., Komissarov A.A., Koltygin A.V., Belov V.D. Comparison of castability, mechanical, and corrosion properties of Mg–Zn–Y–Zr alloys containing LPSO and W phases. Transactions of Nonferrous Metals Society of China. 2021; 31 (5): 1276–1290. https://doi.org/10.1016/S1003-6326(21)65577-2

22. Andersson J.O., Helander T., Hцglund L., Shi P.F., Sundman B. Thermo-Calc and DICTRA, computational tools for materials science. CALPHAD. 2002; 26 (2): 273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

23. Thermo-Calc software TCMG4: TCS Mg-based alloys database version 4 (accessed: 01.03.2022).

24. Bazhenov V.E., Koltygin A.V., Sung M.C., Park S.H., Tselovalnik Y.V., Stepashkin A.A., Rizhsky A.A., Belov M.V., Belov V.D., Malyutin K.V. Development of Mg– Zn–Y–Zr casting magnesium alloy with high thermal conductivity. Journal of Magnesium and Alloys. 2021; 9 (5): 1567–1577. https://doi.org/10.1016/j.jma.2020.11.020

25. Kirkland N.T., Birbilis N., Staiger M.P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomaterialia. 2012; 8 (3): 925–936. https://doi.org/10.1016/j.actbio.2011.11.014

26. ASTM Standard G1-03. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken: ASTM International, 2011.

27. ASTM Standard G102-89, Standard practice for calculation of corrosion rates and related information from electrochemical measurements. West Conshohocken: ASTM International, 2015.

28. Баженов В.Е., Пикунов М.В., Сафронова А.А., Целовальник Ю.В. Исследование горячеломкости сплавов системы Al–Zn. Металлы. 2017; (5): 37–44. Bazhenov V.E., Pikunov M.V., Safronova A.A., Tselovalnik Yu.V. Hot-tearing susceptibility of Al–Zn alloys. Russian Metallurgy (Metally). 2017; 2017: 711–717. https://doi.org/10.1134/S0036029517090026

29. Bazhenov V.E., Koltygin A.V., Titov A.Yu., Belov V.D., Pavlinich S.P. Influence of ignition inhibitors on the strength of resin bonded sand molds and the composition of the oxide film on the surface of ML19 alloy castings. Liteinoe proizvodstvo. 2019; (5): 8–14 (In Russ.).

30. Koltygin A.V., Bazhenov V.E. Structure and properties of ML10 (NZ30K) magnesium alloy, used as a raw material for the castings production. Tsvetnye metally. 2017; (7): 68–72. (In Russ.).

31. Bazhenov V.E., Sannikov A.V., Saidov S.S., Rizhskii A.A., Koltygin A.V., Belov V.D., Yudin V.A. Influence of the alloying elements content and cooling rate on the corrosion resistance of the ML10 alloy. Liteinoe proizvodstvo. 2020; (12): 13–18. (In Russ.).

32. Bazhenov V.E., Koltygin A.V., Sung M.C., Park S.H., Titov A.Yu., Bautin V.A., Matveev S.V., Belov M.V., Belov V.D., Malyutin K.V. Design of Mg–Zn–Si– Ca casting magnesium alloy with high thermal conductivity. Journal of Magnesium and Alloys. 2020; 8 (1): 184–191. https://doi.org/10.1016/j.jma.2019.11.008

33. Li C.Q., Xu D.K., Zeng Z.R., Wang B.J., Sheng L.Y., Chen X.B., Han E.H. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg– Zn–Y alloys. Materials and Design. 2017; 121: 430–441. https://doi.org/10.1016/j.matdes.2017.02.078

34. StJohn D.H., Qian M., Easton M.A., Cao P., Hildebrand Z. Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A. 2005; 36: 1669–1679. https://doi.org/10.1007/s11661-005-0030-6

35. Jiang D.T., Mukherjee A.K. Spark plasma sintering of an infrared-transparent Y2O3–MgO nanocomposite. Journal of the American Ceramic Society. 2010; 93 (3): 769–773. https://doi.org/10.1111/j.1551-2916.2009.03444


Review

For citations:


Bazhenov V.E., Baranov I.I., Lyskovich V.V., Koltygin A.V., Sannikov A.V., Kyaramyan K.A., Belov V.D., Pavlinich S.P. Investigation of castability, mechanical, corrosion properties and flammability of ML-OPB and EWZ43 magnesium alloys. Izvestiya. Non-Ferrous Metallurgy. 2023;1(1):39-55. https://doi.org/10.17073/0021-3438-2023-1-39-55

Views: 564


ISSN 0021-3438 (Print)
ISSN 2412-8783 (Online)